Space-Time Correlations of Seismotectonic Parameters: Examples from Japan and from Turkey Preceding the İzmit Earthquake

by Ali Osman Oncel and Thomas H. Wilson

Abstract Analysis of the correlation between fractal attributes of complex seismotectonic variables may offer insights into seismic hazard assessment. The Gutenberg–Richter, moment–magnitude, and moment–source area relations yield a direct fractal relationship among the Gutenberg–Richter b-value, occurrence rate, and the characteristic linear dimension of the fault plane (square root of fault surface area). In contrast, temporal variation in the correlation dimension of epicenters (D_C) is found, in several studies, to correlate negatively with the b-value in different regions of the world. Spatial variations between the b-value and D_C also tend to oppose each other. In Japan, negative correlations are also observed in the regional scale comparisons of the capacity dimension (D_o) of active fault systems and the b-value. However, at local scales, the relationship yields both positive and negative correlation. The occurrence of positive or negative correlation appears to be controlled by different modes of failure within the active fault complex.

Spatial variations between the b-value and D_C along the Northern Anatolian Fault Zone (NAFZ) suggest that, on average from 1900 to 1992, earthquake magnitudes were higher and epicenters more scattered within the central NAFZ than in its eastern and western segments. Temporal analysis reveals that the relationship between the b-value and D_C are nonstationary. Temporal correlations are generally negative. A period of positive correlation is observed between 1976 and 1988. During the last 3 yr of this period (1985–1988), both the b-value and D_C rose significantly, suggesting that stress release occurs through increased levels of low-magnitude and increasingly scattered seismicity. This dispersed pattern of seismicity, in combination with higher slip rates in the central NAFZ, may be one that did not adequately relieve stress along the main fault zone. This change in behavior and the tendency during the last century for the seismicity to migrate westward along the NAFZ may point to an increased risk of larger magnitude events such as the İzmit earthquake.

Introduction

Natural phenomena are often characterized by complex patterns that have similar appearance over several ranges of scale (Burrough, 1981; Korvin, 1992; Robertson and Sammis, 1995; Jiang and Plotnick, 1998). Examples include patterns formed by leaf veins, solute diffusion, and cloud shapes. Fractals have provided a way to characterize complex phenomena in a variety of disciplines ranging from the medical sciences to photogrammetry. Numerous examples of fractal characterization are encountered in the earth sciences. Analysis of topography, for example, suggests that it is fractal (e.g., Gilbert, 1989; Mareschal, 1989; Klinkberg and Goodchild, 1992). Tectonic processes are generally assumed to have fractal properties in both time and space (Aki, 1981; Rundle, 1989; Turcotte, 1989a,b; Wu, 1993; Cowie et al., 1995; Godano and Caruso, 1995; Oncel, 1995, 1996a,b; Wilson and Dominic, 1998; Wilson, 2001). Surface fracture traces (Barton and Hsieh, 1989; Walsh and Watterson, 1993; Barton, 1994; Weiss and Gay, 1998) and active faults (Hirata, 1989a; Oncel et al., 1995; Oncel and Alptekin, 1996; Oncel et al., 2001; Wilson, 2001) form fractal patterns, and fractal models of fault systems predict the relative velocities along the main and higher-order fault strands (Turcotte, 1986).

Fault–Magnitude Interrelationships

Studies of possible correlation between earthquake seismicity and fault distribution are limited. The potential application to hazard assessment of fractal associations between seismotectonic variables lies mainly in the potential to distinguish between normal and anomalous correlations between the fractal attributes of these data sets. For example,
Oncel et al. (2001) noted that a negative correlation between the b-value and D (active faults) observed in one area of Japan is associated with relatively low maximum magnitude earthquake activity. Yet, this area has lower b-values than elsewhere in Japan and coincides with an area of increased active fault complexity. The lower maximum magnitudes of earthquakes in this area may represent anomalous conditions. The coincidence of low maximum magnitude and low b-value may in itself suggest that historical earthquake activity in this area may not be representative of the potential for greater earthquakes. However, an active fault network of increasing complexity is present through the area along which larger magnitude earthquakes could occur. Mapping and analysis of these correlation patterns may provide insight into the earthquake mechanism and risk.

The relationship between the spatial distribution of faults and seismicity is anticipated from the interrelationships among the frequency–magnitude (Gutenberg and Richter, 1952), moment–magnitude (Aki, 1967), and moment–source area (Kanamori and Anderson, 1975). The result,

$$N = \beta r^{-2b},$$ \hspace{1cm} (1)

(see Turcotte, 1992) defines a fractal interrelationship among the frequency of earthquake occurrence (N), the characteristic linear dimension of the fault surface (r), and the b-value from the Gutenberg–Richter relationship ($\log N = -bm + a$), where β is a constant. Equation (1) defines a fractal relationship between N and r in which the fractal dimension, D, equals $2b$.

The spatial distribution of faults in central Japan has been shown by Hirata (1989a) to be fractal and to obey the following power law,

$$N = Cr^{-D},$$ \hspace{1cm} (2)

where N is the number of areas of size r that are occupied by parts of the fault pattern, and C is a constant of proportionality. Equation (2) suggests that cumulative fault length has a fractal distribution. In general, we would expect N of equation (1) to vary directly with N of equation (2), that is, the density of earthquakes in the subsurface is expected to vary in proportion to the density of active fault networks exposed at the surface.

Spatial–Magnitude Interrelationships

Hirata (1989a), Henderson et al. (1992), and Oncel (1995, 1996a,b) compared the fractal dimension of epicenter distribution with the b-value in the Gutenberg–Richter relation and obtained a negative correlation. This is the opposite of Aki’s (1981) prediction that $D = 3b/\mu$. Hirata’s (1989a) result reveals greater complexity in the relationship between earthquake distribution and b; however, several lines of reasoning suggest that Aki’s prediction should hold (e.g., King, 1983; Turcotte, 1986). Further evaluation of the relationship proposed by Aki (1981) suggests that both positive and negative correlations exist between the fractal dimensions of active fault complexes and the b-value (Oncel et al., 2000). A wide variety of phenomena exhibit scale-invariant spatial and temporal distribution, including fault and earthquake distribution and temporal patterns of earthquake occurrence. These observations suggest that many natural fracture systems and earthquake populations may be described and interpreted in terms of their fractal geometry (Mandelbrot, 1982). Other examples include fractal characterization of fracture patterns (Barton and Hsieh, 1985), fragmentation of the lithosphere (Turcotte, 1986), and the roughness of individual fault traces, such as the San Andreas in California (Aviles et al., 1987; Okubo and Aki, 1987). Considerable work suggests that the fractal properties are scale limited (Scholz, 1995; Oncel et al., 2001; Wilson, 2001).

Spatial patterns of earthquake distribution and temporal patterns of epicenter distribution are also demonstrated to be fractal by using the two-point correlation dimension D_C (e.g., Kagan and Knopoff, 1980; Sadovsky et al., 1984). Similar observations have also been made of the fractal correlation dimension of laboratory scale seismicity associated with microfracturing in rocks (Mogi, 1962; Scholz, 1968; Hirata et al., 1987; Main et al., 1990). The Gutenberg–Richter b-value noted previously has been suggested to represent a generalized fractal dimension of earthquake magnitude distributions (Aki, 1981; Turcotte, 1992). Sornette et al. (1991) noted that this interpretation assumes a dislocation model for the seismic source and also requires a scale-invariant recurrence interval. The relationship has nevertheless been proven to apply on empirical grounds for tensile fracture in the laboratory (Hatton et al., 1993). Whereas the significance of the relationship at a larger scale remains uncertain, the relationship is implicitly assumed in much of the recent literature on the nonlinear dynamics of earthquakes (Main, 1996). However, the b-value has been shown to vary systematically before and during major earthquakes (Smith, 1986) and in laboratory tests conducted under controlled conditions (Main et al., 1990). This variation has been attributed to rock heterogeneity (Mogi, 1962) or heterogeneous stress distribution (Scholz, 1968). The most recent studies (Main et al., 1990) have extended and unified these observations into a single negative correlation between b and the degree of stress concentration measured by the relative stress intensity factor K/K_c, where K_c is the fracture toughness.

A complete description of the fractal character of the seismotectonic data requires more than one fractal dimension or scaling exponent (Sornette et al. 1991; Cowie et al., 1995), and these generally reflect different aspects of the scale invariance and need not be equal to or even positively correlated with one another. For example, the capacity dimension, D_c, estimated by the box-counting method (Feder, 1988), measures the space-filling properties of a fracture set.
with respect to changes in grid scale (Hirata, 1989a). The fractal relationship between the characteristic linear dimension of faults and the b-value (e.g., Turcotte, 1989) provides a measure of the relative proportion of large and small seismogenic faults (Aki, 1981; King, 1983) or cracks producing acoustic emission (Main et al., 1990). The correlation dimension (D_c) (Grassberger and Procaccia, 1983) measures the spacing or clustering properties of a set of points and is often used to characterize the distribution of earthquake epicenters (Kagan and Knopoff, 1980; Hirata, 1989b) and hypocenter distributions of acoustic emissions in laboratory experiments (Hirata et al., 1987).

This article reviews the previous results of our work (Oncel et al., 1995, 1996a,b, 2001) that examine space-time variations in the correlation between the fractal characteristics of seismicity and faulting along the active fault zones of Japan and Turkey. Special note is made of unusual changes in the temporal correlation between seismicity distribution and b-value in the western segment of the NAFZ, from approximately 1975 to 1988, preceding the Izmit earthquake.

Regional Description

Japan

The Japanese islands are divided geologically into two different tectonic regimes at about 138° E longitude, roughly separating southwestern and northwestern Japan (Fig. 1a and b). This line falls roughly along the Itoigawa–Shizuoka tectonic line (ISTL), which is the tectonic boundary between southwestern and northeastern Japan and is also the western boundary of the Fossa–Magna region and the eastern boundary of the Japanese Alps. The ISTL is thought to represent an incipient subduction zone (Kobayashi, 1983; Nakamura, 1983) across which northeastern Japan (North American Plate) is subducting beneath southwestern Japan (Eurasian Plate).

In southwestern Japan, oblique subduction of the Philippine Sea Plate beneath the Eurasian Plate along the Nankai trough produces transpressional right-lateral offsets along the median tectonic line (MTL), in which the outer zone moves SW (Fig. 1a and b). The Philippine Sea Plate also descends beneath the North American Plate in the vicinity of central Japan and forms two TTT-type triple junctions. One is located near the southern end of the ISTL, where the Philippine, Eurasian, and North American plates meet, and the other is formed approximately 400 km to the east out in the Pacific ocean, where the Pacific, Philippine, and North American plates meet at the northern end of the Izu–Ogasawara arc.

Turkey

The tectonic environment of Turkey is also associated with complex multiplate interactions. The Anatolian Plate, for example, escapes westward along the North Anatolian

Figure 1. (a) Shallow mainshock seismicity data ($h < 20$ km) on land covering the period of time from 1600 to 1997. (b) Active fault map of Honshu and Shikoku. Locations of analysis lines 1 through 3 are shown. (c) The epicenter distribution of earthquakes that occurred between 1900 and 1992 in Turkey. The data are split into five seismotectonic zones labeled A–E.
Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ) because of the N–S compression exerted on the area by the collision of the African and Arabian plates to the south and the Eurasian plate to the north (Fig. 1c).

The deformation pattern in eastern Turkey consists of NE–SW left-lateral offsets along the EAFZ and NW–SE right-lateral conjugate strike-slip faults along the NAFZ resulting from N–S compression (Barka and Kadinsky-Cade, 1988; Taymaz et al., 1991). The NAFZ, EAFZ, and the North East Anatolian Fault Zone (NEAFZ) are clearly defined by seismicity during the period of time extending from 1900 to 1992 (Fig. 1c).

Previous Studies

A recently completed study in Japan (Oncel et al., 2001) examined the correlation between fractal properties of the active fault complex and the Gutenberg–Richter b-value. The study revealed that the correlation between D and b varies considerably throughout Japan and can be either positive or negative. Overall, D and b are negatively correlated. We interpreted that this would generally be the case because increased complexity in the active fault network (corresponding to increased fractal dimension) accommodates larger magnitude seismicity (lower b) along fault planes of relatively larger surface area. Significant positive correlations between b and D are also observed in Japan. Positive correlations occur in complex areas of the active fault network where the fractal dimension is highest. We interpreted that in these areas the probability of large-magnitude earthquakes decreases in response to increased fragmentation of the active fault network and there is increased possibility that stress release will take place along faults of smaller surface area.

Our studies also include an examination of the temporal evolution of seismicity in the western (between 24° and 31° E) and central (between 31° and 41° E) parts of the NAFZ (Oncel et al., 1995, 1996a). Also, spatial variations of seismicity along the NAFZ, EAFZ, and NEAFZ were examined on the basis of their overall tectonic differences. A more objective examination in the spatial variations of seismicity along the NAFZ was conducted by dividing the fault zone into subregions, each of which contained 100 seismic events (Oncel et al., 1996b).

The approach used in our research has been unique in that it explores the interrelationship between complex seismotectonic variables by comparing measures of their fractal properties. The results have potential applicability in the areas of earthquake hazard assessment. If, for example, interrelationships between the fractal characteristics of seismicity, active fault distributions, geodetic strain, topography, and other variables can be established, they may serve as a basis for seismotectonic classification and the identification of anomalous seismic behavior.

Methods of Analysis

Seismic b-Value
Estimates of the Gutenberg–Richter b-value are least biased when computed using the maximum likelihood method (Aki, 1965),

\[b = \log_{10} e(\bar{m} - m_0 + 0.05), \]

where \(\bar{m} \) is the mean magnitude of events of \(M > m_0 \), that is the threshold magnitude for which complete reporting is available. The seismic b-value is found to be negatively related to the mean magnitude and mean crack length (Main et al., 1992). The value 0.05 is a correction constant that compensates for round-off errors. The 95% confidence limits for this estimate are \(\pm 1.96b / \sqrt{n} \), where \(n \) is the number of earthquakes used to make the estimate. The b-value ranges between 0.5 and 1.6 in the present study. This yields typical confidence limits of \(\pm 0.1–0.2 \) for a typical sample consisting of \(n = 100 \) earthquakes.

Capacity Dimension \(D_c \)

In the study we conducted in Japan (Oncel et al., 2001) we used the box-counting method (e.g., Hirata, 1989a; Turcotte, 1989a) to evaluate the detailed size-scaling characteristics of active fault networks in Japan. The analysis was undertaken in 70- × 70-km areas of the fault network. Each area was covered by square boxes with sides of length \(r \), and the number of boxes \((N) \) containing part of the fault pattern was counted as \(r \) was decreased. Fractal behavior is implied when the number of occupied boxes \((N) \) varies with the length of the box side \((r) \) raised to some power \((-D) \), as shown in equation (2).

\[N = Cr^{-D}. \]

In this relationship, \(D \) is the fractal dimension and is sometimes referred to as the capacity dimension, or box dimension. \(C \) is a constant. As defined by equation (5), \(D \) is a constant and therefore scale invariant.

Correlation Dimension, \(D_C \)

The correlation dimension, \(D_C \), is determined using the correlation integral method. This method is often preferred, particularly when evaluating the scaling attributes of distributions of points such as epicenters. It provides a simple and reliable estimate of the fractal properties of point distributions (Kagan and Knopoff, 1980; Hirata, 1989b; Henderson and Main, 1992). The correlation dimension, \(D_C \), is found using

\[D_C = \lim_{r \to 0} \frac{\log C(r)}{\log(r)}, \]

where \(C(r) = Nh \) is the correlation integral (Grassberger, 1983; Grassberger and Procaccia, 1983), \(N \) is the number of earthquake pairs in the particular analysis window separated by a distance less than \(r \), and \(n \) is the total number of events.
analyzed. Here we also estimate the standard error, \(\sigma \), found by linear regression of \(\log C \) against \(\log r \). The percentage error obtained using this method is in general smaller than that of the \(b \)-value because it is based on a regression involving \(n(n - 1)/2 \) individual two-point distances (\(r \)) rather than \(n \) in the case of earthquake magnitudes (\(m \)). The angular distance, \(r \), in degrees between two events is calculated using the formula

\[
 r = \cos^{-1}(\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos(\phi_1 - \phi_2)),
\]

where \((\theta_1, \phi_1)\) and \((\theta_2, \phi_2)\) are the colatitudes (\(\theta \)) and longitudes (\(\phi \)) of the two events, respectively (Hirata, 1989). In the present study, the correlation dimension is defined by fitting a straight line to a plot of \(\log C(r) \) against \(\log r \) (converted to a distance using \(1^\circ = 111 \) km) as \(r \) tends to zero over a data range for the first 1.5 orders of magnitude for which the data were considered reliable. The lower bound may be determined by the epicentral resolution and the upper bound by the influence of the finite size of the study zone (Kagan and Knopoff, 1980). In the present study, the correlation plots in general exhibit scale invariance with parallel slopes in both the discrete and cumulative distributions between \(0.7 < \log r < 2.2 \) or \(5 < r < 160 \) km.

Space-Time Correlations:
Results of Fractal Analysis

Japan

In our evaluation of the spatial distribution of variations between the capacity dimension of the active fault complex and \(b \)-value throughout Japan (Oncel et al., 2001), we conducted detailed comparisons of \(D_0 \) and \(b \) along three regional lines that extend along the length of Japan (see Fig. 1b). Correlation coefficients between \(D_0 \) and \(b \) were computed at 20-km intervals along each line. A local measure of the correlation between \(b \) and \(D_0 \) was computed using a 160-km-long sliding window (Fig. 2). Overall, the correlation between \(b \) and \(D_0 \) is negative; however, an examination of the local correlation reveals areas of both positive and negative correlation.

Negative correlations are associated with a drop in \(b \) and parallel rise in \(D_0 \) (see Fig. 2). The drop in \(b \) suggests increased probability of seismicity of a larger magnitude. The parallel increase of \(D_0 \) is associated with denser and more complex regions of the active fault network. We suggest that this occurs because the greater density of faulting in the high \(D_0 \) areas accommodates rupture on interconnected faults of larger total surface area and therefore larger seismic magnitude.

Positive correlations arise from parallel variation of \(b \) and \(D_0 \). We interpret that the reduced probability of larger-magnitude earthquakes results from increased fault density, which allows stress to be released through lower-magnitude seismicity on smaller fault strands. Whether the correlation is positive or negative, there is an increase in \(D_0 \). However, \(b \) will rise or fall depending on the mode of failure within the dense fault system.

The differences in the time frames covered by seismicity and active fault data have a significant effect on the result. The active faults of Japan are considered to be active or potentially active if there has been some movement along the fault during the Quaternary. Whereas rupture may have had a tendency to occur on larger faults within the complex at one period of time, stress release along smaller fault strands may be prevalent at other times. A strong correlation is observed between Quaternary vertical displacements, surface elevation, and the fractal properties of topography (Wil-
son, unpublished data). However, topography and Quaternary vertical displacement do not correlate with short-term horizontal crustal strains measured over 10- and 100-yr time periods. Short-term horizontal crustal strain must have varied considerably over the 2.5-m.y. time frame of the Quaternary, so that at any particular instant in time, short-term strain patterns may differ considerably from net long-term strain.

We plan future work to evaluate the correlation of D_0 and recent crustal strain with the correlation dimension D_C throughout Honshu.

Turkey: Temporal Variations. The variation between b and D_C over time has been evaluated along the western and central subdivisions of the NAFZ. In both cases, a negative temporal correlation was obtained between b and D_C. Results obtained from the western part of the NAFZ from 1945 to 1988 (Fig. 3) are weakly negative ($r = -0.57$). Increases of b are generally paralleled by decreases of D_C. Oncel et al. (1995) suggested that the negative correlation in this instance might be an artifact of improved station coverage rather than a result of the underlying dynamics of strain release and remained cautious in their conclusion. Along the western segment of the NAFZ, which includes Istanbul and the Marmara Sea, b increases from approximately 0.7 to 1.4 over a 43-yr period of time extending from 1945 to 1988. The increases of b imply an increased event rate dominated by lower-magnitude seismicity. The data also reveal a significant change of behavior in the western part of the NAFZ between 1965 and 1975. If one considers only the data prior to 1965, the correlation is significantly negative (-0.92, see Fig. 4b). However, the variations of b and D_C after 1975 have a weak positive correlation (0.48, Fig. 4c). Oncel et al. (1996) undertook a similar comparison of b and D_C (Fig. 5) in the central part of the NAFZ (31°–41° E; Fig. 1c). Along
Seismic activity along the NAFZ has shown a general tendency to migrate westward during the time period 1900–1990 (Stein et al., 1997). The decreased rate of occurrence of earthquakes of larger magnitude, inferred from an increase in b (0.65–0.95), observed in the central portion of the NAFZ up through the time period 1953–1975 might be associated with a shift in stress concentration into the western part of the NAFZ. The rise of b in the western NAFZ during the same time period is even greater (0.65–1.15); so there is no reason to suppose that stress transferred from the central to the western NAFZ was building up during that time period. The relationship of these changes with the 17 August 1999 İzmit earthquake ($M_s = 7.8$, 29.97° E and 40.76° N) and the 13 March 1992 Erzincan earthquake ($M_s = 6.8$, 39.61° E, 39.71° N) that occurred in the central NAFZ remains questionable until analysis of more recent data is completed. The sharp increase of the b-value along the western NAFZ that occurs between 1972 and 1974 (Fig. 3a) may be related to increased station density, because increased station density should yield increased numbers of low-magnitude events and an associated increase in b-value. However, this sudden increase in the b-value is followed by an equally sudden decrease from 1.6 to 1.15 between 1975 and 1977 (Fig. 3a). Thereafter, the b-value fluctuates about an average value of approximately 1.2 until 1985. D_C, on the other hand, drops suddenly from approximately 1.15 to 0.7 during the time period 1972–1977. This represents an increased tendency for seismicity to cluster and might also be produced by an increase in station coverage. Following 1977, D_C rises slightly (0.7–0.8) until about 1984. During the last 3 or 4 yr of the period of analysis, both b and D_C increase abruptly. During the time period 1976–1988, following the sudden changes of the mid-1970s, b and D_C exhibit weak positive correlation (Fig. 4c). The relationships between b and D_C preceding 1970 and following the mid-1970s are distinctly different. The increases of b occurring in the time period 1945–1965 level off during 1976–1988, and seismicity remains increasingly clustered (low D_C). From approximately 1985 to 1988, there are indications of a significant increase in both b and D_C, corresponding to increased levels of low-magnitude and more-scattered seismicity, respectively. This combination of factors—westward migration along with increased levels of low-magnitude seismicity and scattered (unclustered) epicenter distribution—might be indicators of increased seismic risk in the area. These variations reveal a level of complexity in seismic behavior that differs from previous reports that the b-value increases after a major earthquake up to a peak value and then decreases to a minimum at the time of occurrence of the next event (e.g., Gирович, 1973; Ma, 1978; Smith, 1986; Huang and Turbot, 1988; Main et al., 1990). The ongoing analysis will track these changes into the present and provide a more definitive assessment of their interrelationship to the İzmit earthquake.

Turkey: Spatial Variations. Spatial variability between b and D_C is examined separately along the entire length of the NAFZ, the period of analysis ended in 1975, and the event rate showed no dramatic increase because of increased station coverage (Fig. 5a). The negative correlation between b and D_C observed along the central part of the NAFZ was much stronger overall ($r = -0.84$, Fig. 5b) than that observed in the western part (-0.57, Fig. 3b). However, when the correlation is evaluated over the interval of time preceding 1965 (Fig. 5c), the correlation in the central part of the NAFZ ($r = -0.9$) is found to be similar to that observed in the western NAFZ (-0.92, Fig. 4b). The negative correlation between b and D_C is significant across the 1900-km span of the central and western NAFZ. Data from the western NAFZ after 1975 make a transition to positive correlation.

![Figure 5](image-url)
NAFZ. Oncel et al. (1996) undertook a detailed examination of the spatial variability of seismicity along the NAFZ for seven subdivisions (Fig. 6), each containing the same number of seismic events (n = 100). This analysis is restricted to the NAFZ, and regions one through seven extend from west to east along its length. Data used in this analysis include events of \(M > 4.5 \) recorded during the time interval 1900–1992. The variability between \(b \) and \(D_C \) along the length of the fault zone reveals divergence between \(b \) and \(D_C \) in the central NAFZ. \(D_C \) increases through the central part of the NAFZ, whereas the \(b \)-value decreases. The spatial variations yield a strong negative correlation \((r = -0.85) \) between \(b \) and \(D_C \) (Fig. 7a).

The lowered \(b \)-value observed in the central NAFZ is associated with areas where there is a tendency for stress to build up over time and to be released by earthquakes that are less frequent but larger in magnitude. Conversely, higher \(b \)-value observed to the west and east of the central NAFZ is considered indicative of low stress buildup accompanied by continued stress release in the form of numerous small-magnitude events. The high-\(D_C \) regions are associated with scattered, less-clustered epicenter distributions, whereas lower-\(D_C \) regions are associated with more-clustered epicenter distributions. The negative spatial correlation develops in response to an increase in stress concentration (lower \(b \)) and a decrease in epicenter clustering (increased \(D_C \)) through the convex-upward bend occurring in the central part of the NAFZ. Increased clustering (decreased \(D_C \)) and a tendency to experience smaller-magnitude seismicity (higher \(b \)) characterized both ends of the NAFZ during the period of time preceding 1975. It is apparently in these regions, where the NAFZ interacts with crosscutting fault systems, that stress is more easily dissipated in the form of larger numbers of smaller-magnitude earthquakes (i.e., higher \(b \)). The spatial variation of \(b \) and \(D_C \) reveals a change in the dynamics of plate interaction along the length of the NAFZ. However, the significance of those changes is not clearly understood. The areas of higher \(b \) and lower \(D_C \) (more clustered seismicity) may be the result of creeping parts of the fault zone, whereas higher \(D_C \) (less-clustered seismicity) and lower \(b \) may be related to asperities along the fault (Oncel and Wyss, 2000).

The spatial analysis provides a view of the long-term average characteristics of the \(b \)-value and \(D_C \). The central NAFZ is an area where the probability of occurrence of larger-magnitude seismicity has been the greatest, on average, from 1900 to 1992. However, the preceding temporal analysis reveals that these properties are time variant. The changing relationship between \(b \) and \(D_C \) that occurs in the western NAFZ following 1975 represents an anomalous event. Recent conditions along the central NAFZ may suggest a cause. Recent deformation measured by Global Positioning System (GPS) (McClusky et al., 2000) reveals maximum fault slip rates of 24 ± 2 mm/yr in the central part of the NAFZ, where \(D_C \) is higher (epicenter distribution is less clustered) and earthquake magnitudes are larger than average. This implies that, in general, there is greater fracture toughness in the central portions of the NAFZ. Oncel et al. (1996) examined the relation between \(b \) and \(D_C \) on a more regional scale that incorporated the Eastern Anatolian Fault Zone (EAFZ) (Figs. 1c and 7b). In the EAFZ, they found convergence between \(b \) and \(D_C \) similar to that found on the eastern and western ends of the NAFZ. Along the EAFZ and NAFZ, fault slip rates of 9 ± 2 mm/yr and 10 ± 2 mm/yr, respectively, were measured by GPS in the areas where \(b \) and \(D_C \) converge in value. The occurrence of rapid displacement along the central NAFZ was probably not released or compensated for by increased levels of scattered seismicity occurring in the western NAFZ. Had increased levels of low-magnitude seismicity been concentrated or clustered along the main fault strand, stress transferred into the western NAFZ might have been released more effectively, rendering the possibility of larger-magnitude earthquakes less likely.

Figure 6. The NAFZ is been subdivided into seven regions, each of which contains 100 epicenters. Each area is bounded along strike by a meridian of longitude, and the north–south width is held constant. The central region along the NAFZ (region 4) is associated with a transition zone.
Space-Time Correlations of Seismotectonic Parameters

areas of positive correlation between which stress is released within complex fault systems. In

tions are interpreted to represent differences in the way in
dynamics of plate interactions. In Japan, the spatial varia-

tion of the fault system (increased

dimension) the increased complexity and fragmen-

tion of time represented by each point in the analysis varies

from point to point to insure that values of b and D_C are
derived from 100 events. Temporal variations of b and D_C,
are negatively correlated during the time period 1940–1965.
During that time there was a significant trend of increasing
b-value followed by decreases in D_C. Unusual behavior is
observed in the western NAFZ during the time period 1972–
1977, which may be due to increased station density. How-
ever, the relationship between b and D_C from 1976 to 1988
(Fig. 4c) differs significantly from that associated with the

time period 1945–1965. Seismicity suddenly became more
clustered, whereas the b-value remained nearly constant dur-
ing the time period 1976–1985. During the last 3 yr of the
observation period (1985–1988), both b and D_C rose signifi-
cantly. The changes that occurred between 1985 and 1988
might suggest that a sudden buildup of stress occurred in the
region. The increase in b-value suggests that stress buildup
underwent gradual release. Its behavior in the years imme-
diately preceding the İzmit earthquake is currently under ex-
amination.

Spatial variation in the patterns of seismicity along the
NAFZ reveals the presence of strong divergence in b and D_C
through the central convex northward bend in the NAFZ. D_C
increases and b decreases through this area. The negative
correlation between b and D_C is associated with this diver-
gence. The long-term (1900–1992) spatial averages suggest
that the central NAFZ has increased risk of larger magnitude
seismicity, whereas the western and eastern segments of the
NAFZ are, on average, associated with reduced risk of
higher-magnitude seismicity (higher b-value). However, re-
cent slip rates reported through the central NAFZ are greater
by a factor of two than those observed in the western NAFZ.
This indicates that excess strain has recently been transmit-
ted into the more slowly moving western NAFZ. Some of the
differences between the central and western segments of the
NAFZ may be related to differences in the mode of fail-
ure, as indicated by earthquake focal mechanisms and by the
more densely spaced geodetic studies (Straub and Kahle,
1995, 1997; McClusky et al., 2000). Along the eastern and
central parts of the NAFZ, failure occurs under compression,
whereas along its western extent, failure occurs through ex-
tension in the Aegean region (Fig. 1c).

The process of creep is usually associated with higher
b-value, whereas asperities are often associated with lower
b-value. The increases of b-value observed in the western
NAFZ from 1975 to 1988 are associated with scattered (less-
clustered) patterns of seismicity. Whereas this process may
be associated with creep, its occurrence on the widely dis-
tributed pattern of seismicity may not have adequately ac-
commodated stress release on the larger fault strands.

Discussion

The relationship of the Gutenberg–Richter b-value to
patterns of faulting and seismicity along convergent and
transform plate boundaries provides information about the
dynamics of plate interactions. In Japan, the spatial varia-
tions are interpreted to represent differences in the way in
which stress is released within complex fault systems. In areas of positive correlation between b and D_C (the capacity,
or box dimension) the increased complexity and fragmen-
tation of the fault system (increased D_C) may provide an
abundance of small fault strands along which stress can be
released through more frequent but lower-magnitude earth-
quakes (increased b). In areas of increased complexity in the
active fault system (higher D_C) associated with larger-
magnitude seismicity (lower b), stress release is interpreted
to occur on fault planes of larger surface area.

In Turkey, the comparisons of b and D_C (correlation
dimension of epicenter distribution) were followed through
time and space along the length of the NAFZ. The variation
between b and D_C over time was evaluated using sliding
windows of 100 consecutive events of $M \approx 4.5$ in the time
period 1900–1992. This leads to different time frames in the
analysis of the western and central subdivisions of the NAFZ.

The analysis in the western NAFZ is based on 375 events,
which are distributed into 25 time windows beginning in
1944 and continuing until 1985. Analysis in the central
NAFZ is based on only 175 events, which were divided into
14 time windows, that extend from 1932 to 1974. The du-
ration of time represented by each point in the analysis varies
from point to point to insure that values of b and D_C are
derived from 100 events. Temporal variations of b and D_C,
are negatively correlated during the time period 1940–1965.
During that time there was a significant trend of increasing
b-value followed by decreases in D_C. Unusual behavior is
observed in the western NAFZ during the time period 1972–
1977, which may be due to increased station density. How-
ever, the relationship between b and D_C from 1976 to 1988
(Fig. 4c) differs significantly from that associated with the
time period 1945–1965. Seismicity suddenly became more
clustered, whereas the b-value remained nearly constant dur-
ing the time period 1976–1985. During the last 3 yr of the
observation period (1985–1988), both b and D_C rose signifi-
cantly. The changes that occurred between 1985 and 1988
might suggest that a sudden buildup of stress occurred in the
region. The increase in b-value suggests that stress buildup
underwent gradual release. Its behavior in the years imme-
diately preceding the İzmit earthquake is currently under ex-
amination.

Spatial variation in the patterns of seismicity along the
NAFZ reveals the presence of strong divergence in b and D_C
through the central convex northward bend in the NAFZ. D_C
increases and b decreases through this area. The negative
correlation between b and D_C is associated with this diver-
gence. The long-term (1900–1992) spatial averages suggest
that the central NAFZ has increased risk of larger magnitude
seismicity, whereas the western and eastern segments of the
NAFZ are, on average, associated with reduced risk of
higher-magnitude seismicity (higher b-value). However, re-
cent slip rates reported through the central NAFZ are greater
by a factor of two than those observed in the western NAFZ.
This indicates that excess strain has recently been transmit-
ted into the more slowly moving western NAFZ. Some of the
differences between the central and western segments of the
NAFZ may be related to differences in the mode of fail-
ure, as indicated by earthquake focal mechanisms and by the
more densely spaced geodetic studies (Straub and Kahle,
1995, 1997; McClusky et al., 2000). Along the eastern and
central parts of the NAFZ, failure occurs under compression,
whereas along its western extent, failure occurs through ex-
tension in the Aegean region (Fig. 1c).

The process of creep is usually associated with higher
b-value, whereas asperities are often associated with lower
b-value. The increases of b-value observed in the western
NAFZ from 1975 to 1988 are associated with scattered (less-
clustered) patterns of seismicity. Whereas this process may
be associated with creep, its occurrence on the widely dis-
tributed pattern of seismicity may not have adequately ac-
commodated stress release on the larger fault strands.

![Figure 7. (a) Variations of b and D_C for zones 1–
7 along the NAFZ. (b) Variations of b and D_C for subdivisions A–E. A, western part of NAFZ; B, North Anatolian Fault; C, eastern part of NAFZ; D, East Anatolian Fault; E Northeast Anatolian Fault Zone.](image-url)
Conclusions

Temporal and spatial variations of the correlation dimension (D_C) and capacity dimension (D_0) show both negative and positive correlation to variations of the Gutenberg–Richter b-value. In the case of Japan, b may drop in intensely faulted areas (high D_0) because the more intensely faulted areas provide larger through-going faults along which stress release can occur. Thus, larger-magnitude earthquakes may be more likely to occur in these more intensely faulted areas. Positive variations between b and D_0 are also observed in Japan, and in this case it seems that more intensely faulted areas accommodate stress release on smaller fault strands.

Temporal analysis of variations between b and D_C in the western NAFFZ make a transition from negative to slightly positive correlation between 1972 and 1976. A sudden drop of b-value precedes the change during a time when station density was increasing. Behavior from 1976 to 1988 is characterized by a tendency to have increased levels of low-magnitude seismicity on a widely scattered distribution of epicenters. The general trend of westward-migrating seismicity during the time period 1900–1990 (Stein epicenters). The general trend of westward-migrating seismicity on a widely scattered distribution of epicenters.

Acknowledgments

We would like to extend our appreciation to K. Kano, O. Nishizawa, and H. Kato for helpful discussions related to these studies. The authors also appreciate partial funding of their research through Japan AIST and STA Fellowships.

References

Main, I. G., P. G. Meredith, P. R. Sammonds, and C. Jones (1990). Influence of fractal law distributions on rock deformation in the brittle field, in Deformation Mechanisms, Rheology and Tectonics, R. J.

