COPYRIGHTS & TRADEMARKS

Copyright © 1997 - 2004 Northwest Geophysical Associates, Inc. All rights reserved worldwide.

The User’s Guide, as well as the software described in it, is furnished under license and may only be used or copied in accordance with the terms of such license. The information in this User’s Guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Northwest Geophysical Associates, Inc. Northwest Geophysical Associates assumes no responsibility or liability for any errors or inaccuracies that may appear in this booklet.

GM-SYS is a registered trademark of Northwest Geophysical Associates, Inc.

Adobe, Acrobat, PostScript, and Adobe Illustrator are trademarks of Adobe Systems Incorporated which may be registered in certain jurisdictions.

AutoCAD is a registered trademark of Autodesk, Inc.

CorelDraw is a registered trademark of Corel Corporation.

GeoGraphix is a registered trademark of Landmark Company.

GeoSec and GeoSec2D are trademarks or registered trademarks of Paradigm Geophysical Ltd.

Geosoft and OASIS montaj are registered trademarks or trademarks of Geosoft, Inc.

Sentinel SuperPro is a trademark of Rainbow Technologies.

Windows, Windows NT, Microsoft and MS-DOS are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

2MOD is a registered trademark of Fugro-LCT, Inc.

Included Software

ImageMagick is Copyright 2000 ImageMagick Studio, a non-profit organization dedicated to making software imaging solutions freely available.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files ("ImageMagick"), to deal in ImageMagick without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of ImageMagick, and to permit persons to whom the ImageMagick is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of ImageMagick.

The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall ImageMagick Studio be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with ImageMagick or the use or other dealings in ImageMagick.

Except as contained in this notice, the name of the ImageMagick Studio shall not be used in advertising or otherwise to promote the sale, use or other dealings in ImageMagick without prior written authorization from the ImageMagick Studio.
Contents

Copyrights & Trademarks .. 2
Software License Agreement .. 11

1. **INTRODUCTION** .. 13
 1.1 GM-SYS Editions .. 13
 Professional License ... 13
 Engineering License .. 13
 LAB (Site) License .. 13
 1.2 GM-SYS Features .. 13
 1.3 Supported platforms .. 14
 1.4 Technical Support ... 14

2. **GETTING STARTED** ... 15
 2.1 Installation .. 15
 2.2 License Management .. 15
 2.2.1 Keylock or dongle Protection .. 15
 2.2.2 Geosoft Licensing .. 15
 2.3 Creating a New Model ... 16
 2.3.1 Overview of New Model Creation .. 16
 2.3.2 Cross-Section Limits .. 16
 2.3.3 Profile Azimuth/Relative Strike Angle ... 17
 2.3.4 Topography and Gravity & Magnetics Stations ... 17
 2.3.5 Choosing the Gravity Anomaly to Model: Free-Air, Residual, or Bouguer 17
 2.3.6 Earth's Magnetic Field .. 18
 2.4 Importing a Model from Another Modeling Application .. 18
 2.5 Menu Overview .. 18
 File Menu .. 18
 View Menu .. 18
 Overlay Menu ... 18
 Display Menu ... 18
 Profile Menu .. 19
 Gradients Menu ... 19
 Action Menu ... 19
 Compute Menu ... 19
<table>
<thead>
<tr>
<th>3. Modeling Concepts</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Uniqueness</td>
<td>21</td>
</tr>
<tr>
<td>3.2 DC Shift</td>
<td>21</td>
</tr>
<tr>
<td>3.3 2-D Modeling</td>
<td>21</td>
</tr>
<tr>
<td>3.4 2¾-D Modeling</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Skewed Models</td>
<td>22</td>
</tr>
<tr>
<td>3.6 Inversion</td>
<td>23</td>
</tr>
<tr>
<td>3.7 Computational Basis for GM-SYS</td>
<td>23</td>
</tr>
<tr>
<td>3.8 Single Block Response</td>
<td>24</td>
</tr>
<tr>
<td>3.9 Rotated-to-Pole & ROTATED-TO-equator Magnetic Data</td>
<td>24</td>
</tr>
<tr>
<td>3.10 Choice of Gravity Anomaly: Free-Air, Residual, or Bouguer</td>
<td>24</td>
</tr>
<tr>
<td>3.11 Magnetic Units</td>
<td>24</td>
</tr>
<tr>
<td>3.12 Gravity Units</td>
<td>27</td>
</tr>
<tr>
<td>3.13 Gravity & Magnetic Gradients</td>
<td>27</td>
</tr>
<tr>
<td>3.13.1 Gradient Axis</td>
<td>29</td>
</tr>
<tr>
<td>3.13.2 Magnetic Gradient Display and Units</td>
<td>29</td>
</tr>
<tr>
<td>3.13.3 Gravity Gradients Display and Units</td>
<td>29</td>
</tr>
<tr>
<td>3.14 Grid Output</td>
<td>29</td>
</tr>
<tr>
<td>3.15 Symbol Display</td>
<td>30</td>
</tr>
<tr>
<td>3.16 Well Display</td>
<td>30</td>
</tr>
<tr>
<td>3.17 Bitmap Display</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Model Elements</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Surfaces</td>
<td>33</td>
</tr>
<tr>
<td>4.2 Points</td>
<td>33</td>
</tr>
<tr>
<td>4.3 Blocks</td>
<td>33</td>
</tr>
<tr>
<td>4.3.1 Block Labels</td>
<td>34</td>
</tr>
<tr>
<td>4.3.2 Block Data</td>
<td>34</td>
</tr>
<tr>
<td>4.4 Backdrop Images</td>
<td>34</td>
</tr>
<tr>
<td>4.5 Symbols</td>
<td>35</td>
</tr>
<tr>
<td>4.6 Well Markers and LAS well files</td>
<td>35</td>
</tr>
<tr>
<td>4.7 Gravity and Magnetic Stations</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. GM-SYS Interface</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Menus</td>
<td>37</td>
</tr>
<tr>
<td>5.1.1 File Menu</td>
<td>38</td>
</tr>
<tr>
<td>New Model and Open Model</td>
<td>38</td>
</tr>
</tbody>
</table>
Table of Contents

- **Save Model and Save as** ... 38
- **Close** ... 38
- **Preferences** .. 38
- **Print** ... 39
- **Exit** ... 39
- **Previously Opened Model List** .. 39

5.1.2 View Menu ... 39
- **Previous View** ... 39
- **Mark Current View** .. 40
- **Add Current View** ... 40
- **Edit Views** .. 40
- **View List** ... 40

5.1.3 Overlay Menu ... 41
- **Backdrop** .. 41
- **Symbols** ... 42
- **Edit Wells** .. 42
- **LAS Wells** .. 43
- **Block Fill** ... 43

5.1.4 Display Menu ... 44

5.1.5 Profile Menu ... 44
- **Set Mag. Field** .. 44
- **Set Azi./Strike Angle** ... 45
- **Set Real-World Origin Coord.** .. 45
- **Set Plan View Depth** .. 45
- **Edit Anomaly** .. 45
- **Edit Wells** .. 45
- **Edit Blocks** .. 45
- **Magnetics Elevation Adjust** ... 46
- **Magnetics DC Shift** ... 46
- **Gravity Elevation Adjust & Gravity DC Shift** 46

5.1.6 Gradients Menu ... 46
- **Enable Grav. Gradients / Magn. Gradient** 46
- **Gradient Axis** .. 46
- **Edit Gradients** .. 46
- **Show Gravity Gradients/Magnetic Gradients** 47

5.1.7 Action Menu ... 47
- **Undo** ... 47
Move Point ... 47
Move Group ... 48
Add Point .. 48
Delete Point .. 48
Split Block ... 48
Delete Surface ... 48
Examine ... 48
Box Zoom ... 49
2X Zoom In ... 49
2X Zoom Out .. 49
Invert .. 49
Move Label ... 51
5.1.8 Compute Menu ... 51
5.1.9 Window Menu ... 51
5.1.10 Help Menu .. 51
5.2 Menu Tool Bar ... 52
 5.2.1 Cursor tracking ... 52
 5.2.2 Import/Export Horizon ... 52
 Import: .. 52
 Export: ... 52
5.3 Model Window .. 52
 5.3.1 Cross Section Pane .. 52
 5.3.2 Gravity Anomaly Pane ... 53
 5.3.3 Magnetic Anomaly Pane ... 53
 5.3.4 Plan View Pane .. 53
 5.3.5 Scroll Bars .. 53
 5.3.6 Resizing Panes: Sashes ... 53
 5.3.7 Balloon Help .. 54
 5.3.8 Pop-up Menus .. 54
 Axis pop-ups .. 54
 Cross Section Pop-up Menus ... 54
 Gravity Pop-up Menus ... 54
 Magnetics Pop-up Menus ... 54
 Plan View Pop-up Menus ... 55
5.4 Status Bar ... 55
6. Printing a GM-SYS Model

6.1 The Print dialog ... 57
6.2 GM-SYS Plot Output Options ... 58
 6.2.1 Postscript .. 58
6.2.2 Binary CGM .. 58
6.2.3 Clear Text CGM .. 58
6.2.4 Geosoft Plot (.plt) ... 59
6.2.5 DXF ... 59
6.2.6 Raster Images ... 59
6.3 Printer Setup ... 59
6.4 Setup Page Layout ... 59
 6.4.1 Layout ... 60
 6.4.2 Horizontal .. 60
 6.4.3 Vertical .. 60
 6.4.4 Gravity .. 60
 6.4.5 Magnetics ... 60
 6.4.6 Plan View ... 60
6.5 Plot Parameter File (.PPF) .. 60

7. GM-SYS Model File Formats

7.1 Surface (.SUR) File Format .. 62
7.2 Block (.BLK) File Format .. 63
7.3 Gravity (.GRV) File Format .. 64
7.4 Gravity Gradient (.GDO) File Format 64
7.5 Magnetics (.MAG) File Format .. 65
7.6 Magnetic Gradient (.MDO) File Format 65
7.7 View (.VEW) File Format .. 66
7.8 Well (.WEL) File Format ... 66
7.10 Extended Coordinate System (.ECS) File Format 67
7.11 Generic Space-delimited ASCII .. 67
7.12 Symbol definition File ... 67
7.13 Patterns ... 68

8. CVTGMS

8.1 Getting Started ... 69
 8.1.1 Modifying the model .. 69
8.1.2 Output .. 70
8.2 Menus ... 70
 8.2.1 File Menu .. 70
Erase Model ... 70
Open... ... 70
Save As.. 70
Exit ... 70

8.2.2 Execute Menu ... 70
Set Block .. 70
Alter Unit ... 70
Shift XZ... ... 70
Flip over X ... 71
Flip over Z ... 71
Decimate dialog .. 71
Snap... (DIG, XYZ, IHF, & DXF inputs only) 71
Assign Block Names... (DIG , XYZ & IHF inputs only) 71
Remove micro-blocks.. 71

8.2.3 Views .. 71
Full View... 71
Infinity .. 72
Other - only GM-SYS input ... 72

8.2.4 Help ... 72

8.3 File Formats .. 72
8.3.1 2-D DIG & 3-D XYZ Generic ASCII file 72
Two-dimensional .DIG file ... 72
Three-dimensional .XYZ file ... 72

8.3.2 DXF - AutoCAD® .. 73

8.3.3 GMA Struct - GeoGraphix™ 73

8.3.4 GM-SYS ... 73

8.3.5 IHF - GeoSec® .. 74

8.3.6 GAMMA - Chevron ... 74

8.3.7 SAKI - US Geological Survey 74

9. SUPPORTING UTILITIES 75
9.1 NGRF .. 75
9.2 XYZGMS ... 75
SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either an individual or an entity) and Northwest Geophysical Associates, Inc. (NGA). By using this software, you agree to become bound by the terms of this agreement. The term “SOFTWARE” also shall include any upgrades, modified versions or updates of the software licensed to you by NGA. The SOFTWARE that accompanies this license is the property of NGA and its Licensors and is protected by copyright law. If you do not agree to the terms of this Agreement, do not use the software. Promptly return the entire package to NGA or the distributor where you obtained it for a full refund.

1. GRANT OF LICENSE. NGA and its Licensors, grant to you, the Licensee, the nonexclusive right to use this SOFTWARE as defined by this agreement. The term of the license is indefinite unless there is a breach of the license agreement. Upon termination, the purchaser returns all copies of the SOFTWARE and documentation together with a signed affidavit to the effect that all copies have been returned. Licensee is granted permission to print, as necessary, the electronic User’s Guide for Licensee use only.

2. SCOPE OF LICENSE. If you acquired a Single-User License, you may install the SOFTWARE on different computers at your physical address and you must have a mechanism or process in place to assure that only one copy of the program is in use at any time for each license. If you acquired a “SITE LICENSE” you are granted the right to use the SOFTWARE simultaneously on the number of computers granted by the SITE LICENSE at your physical address.

3. OWNERSHIP OF SOFTWARE. NGA and its Licensors retain the copyright, trademarks, titles, and ownership of the SOFTWARE and the related written materials regardless of the form or media on which the original and other copies may exist. The Licensee may make one (1) copy of the SOFTWARE solely for backup purposes. You must reproduce and include the copyright notice on the backup copy. You may not reverse engineer, decompile, or disassemble the SOFTWARE. This Agreement does not grant you any intellectual property rights in the SOFTWARE.

4. SUPPORT. Licenses include service contract support and updates for six months from original purchase date. Support includes phone assistance, prompt correction of reported errors, manual revisions, and periodic SOFTWARE updates. Support is available after the initial six month period for a fee and includes any product updates during that support period.

5. TRANSFERS. You may transfer the SOFTWARE from one computer to another at the Licensee physical address provided that the SOFTWARE is used in accordance with Section 2, SCOPE OF LICENSE, as written above. Except within the bounds of this agreement, you may not distribute copies of the SOFTWARE or accompanying written materials to others. You may not transfer the SOFTWARE to a different physical address or anyone else without the prior written consent of NGA. In no event may you transfer, assign, rent, lease, sell or otherwise dispose of the SOFTWARE on a temporary basis.

6. LIMITED WARRANTY. With respect to the distribution media and physical documentation enclosed herein, NGA warrants the same to be free of defects in materials and workmanship for a period of 60 days from the date of purchase. In the event of notification within the warranty period of defects in material or workmanship, NGA will replace the defective distribution media or documentation. The remedy for breach of this warranty shall be limited to replacement and shall not encompass any other damages, including but not limited to loss of profit, special, incidental, consequential, or other similar claims. NGA and its Licensors do not warrant that the SOFTWARE will meet your requirements or that operation of the SOFTWARE will be uninterrupted or that the SOFTWARE will be error-free.
NGA AND ITS LICENSORS SPECIFICALLY DISCLAIM ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL NGA AND ITS LICENSORS BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHER DAMAGES.

7. GENERAL. The laws of the State of Oregon will govern this Agreement. This Agreement may only be modified by a license addendum, which may accompany this license, or by a written document which has been signed by both you and NGA. Should you have questions concerning this Agreement, or if you desire to contact NGA for any reason, please write: NGA Client Sales and Service, P.O. Box 1063, Corvallis, OR 97339-1063, USA.
1. INTRODUCTION

GM-SYS is a program for calculating the gravity and magnetic response from a geologic model. GM-SYS provides an easy-to-use interface for interactively creating and manipulating models to fit observed gravity and/or magnetic data. Rapid calculation of the gravity and magnetic response from 2D and 2¾-D models speed the interpretation process and allows you to quickly test alternative solutions.

1.1 GM-SYS EDITIONS

Northwest Geophysical Associates offers several GM-SYS configurations to match your modeling needs. The table below shows these configurations and the features available in each.

Professional License

The Professional Edition is our standard offering to commercial and academic geophysicists. With appropriate options, model sizes can have up to 16,000 points and 300 blocks.

Engineering License

The economical Engineering Edition is used for less sophisticated modeling applications.

LAB (Site) License

The LAB Edition is exclusively licensed to academic institutions. The LAB Edition is configured for students who are learning Potential-Field theory.

1.2 GM-SYS FEATURES

2¾-D Modeling allows blocks to be truncated in the ±Y direction and asymmetrically-positioned about the line of the profile.

Joint Inversion/Optimization permits inverse modeling of gravity and/or magnetic data to obtain the optimal fit of the geologic model to your data.

Gravity/Magnetic Gradients allow you to calculate any or all of the six gradient tensor components of the gravity field and the vertical gradient of the total magnetic field.

<table>
<thead>
<tr>
<th>License</th>
<th>Blocks</th>
<th>Stations</th>
<th>2.75D</th>
<th>Inversion</th>
<th>Seismic</th>
<th>Gradients</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mag.</td>
<td>Grav.</td>
<td></td>
<td>Bitmap</td>
<td></td>
<td>Output</td>
</tr>
<tr>
<td>LAB</td>
<td>7</td>
<td>35</td>
<td>35</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>10</td>
<td>300</td>
<td>300</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Advanced</td>
<td>10</td>
<td>300</td>
<td>300</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Professional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>125</td>
<td>1,000</td>
<td>1,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Intermediate</td>
<td>125</td>
<td>1,000</td>
<td>1,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Advanced</td>
<td>300</td>
<td>16,000</td>
<td>16,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Seismic Bitmap permits integration of seismic data or other depth-scaled information (e.g. scanned cross-sections) into the modeling process.

Grid Output allows you calculate the response of a model as a Geosoft grid (.grd) file. You may elect to calculate the response at a fixed elevation, or at a constant terrain separation.

Extended Model Size increases maximum allowable model size to 750 surfaces and 300 blocks.

High Resolution Modeling increases the number of allowable gravity and magnetic observation and calculation points to 16,000.

Oasis montaj Links allow you to build, modify, & plot GM-SYS models from within Oasis montaj. Launching GM-SYS from within Oasis montaj enables cursor tracking between all open Geosoft maps and databases and your GM-SYS model.

CVTGMS is a file conversion program that is included in every GM-SYS configuration. CVTGMS can perform file conversion on the following geologic model files:

- DIG format - Generic 2-D ASCII digitized file,
- XYZ format - Generic 3-D ASCII digitized file,
- DXF format - AutoCAD® DXF format,
- IHF format - Paradigm Geophysical, Ltd., GeoSec® Import Horizon Format
- MMD format - Geophysical Micro Computer Applications, Ltd.,
- 2-Mod® format - Fugro-LCT, Inc.,
- GAMMA format - Chevron-Texaco, and
- SAKI format - USGS.

1.3 SUPPORTEDPLATFORMS

GM-SYS is supported on x86-compatible systems running Microsoft® Windows® NT®, Windows 2000, and Windows XP operating systems.

1.4 TECHNICAL SUPPORT

NGA will provide technical support for any problems you have with GM-SYS for those licensees with current service contracts. If you have a problem or question, please refer to this manual first. If the problem is not covered by this manual or the Help file, you may call NGA, Monday through Friday between 8:00 AM and 5:00 PM Pacific Coast Time. You may also e-mail questions or comments to NGA at any time.

NGA encourages users who have internet access to upload problem models or files to our anonymous ftp site to facilitate prompt correction of any problems. Please notify NGA Technical Support staff by phone or e-mail (support@nga.com) in the event that you have uploaded files.

Northwest Geophysical Associates, Inc.
Mailing Address:
P.O. Box 1063
Corvallis, Oregon 97339-1063 USA
Phone: (541) 757-7231
FAX: (541) 757-7331
e-mail: support@nga.com
ftp: nga.com
WWW: http://www.nga.com

Your initial purchase of GM-SYS entitles you to free support, including any released updates, for a period of one year. To extend your support beyond one year and to receive additional updates, contact NGA.
2. GETTING STARTED

If you're new to GM-SYS, first install the software as described in the instructions below. We recommend that you then use one of the sample models to practice using the GM-SYS interface and familiarize yourself with the capabilities of the software as you browse through the following sections. When you feel fairly comfortable with the interface, work through the tutorial included in Section 11.

If you are already familiar with GM-SYS, install the software as instructed below and then read the Release Notes document, paying particular attention to the What’s New... section.

2.1 INSTALLATION

To begin the installation process, run the installation script <CD_Drive>:\setup.exe. Following acceptance of the license, you will be asked to specify the GM-SYS installation directory.

If Oasis montaj is detected on your system (Oasis montaj 5.1.x, Oasis montaj 6.x, and/or Oasismontaj Viewer 6.x are supported), you will be given the option of installing Oasis montaj Link files that allow GM-SYS and its utilities to run within and utilize the Oasis montaj environment. You may elect to install the link files in any or all of your Oasis montaj distributions.

If you install OASIS montaj at a later time, you may rerun setup.exe and add the OM5 links and/or OM6 links components.

2.2 LICENSE MANAGEMENT

Many copies of GM-SYS are delivered with some type of license protection. Generally, GM-SYS is licensed for a single user. GM-SYS may be copied to the hard disk of several computers, but the license protection must be present for GM-SYS to execute. If you are operating in an environment where you feel GM-SYS may be subject to theft or unauthorized copying, please contact NGA and we will supply you with a protected copy at no charge.

2.2.1 Keylock or dongle Protection

GM-SYS may be configured to use a hardware keylock, commonly called a "dongle". When this protection is enabled, a keylock must be present on the parallel or USB port of the computer for GM-SYS to execute or continue running. Keylocks are transparent to other computer operations, so they may be left on the computer while you are printing or running other software. Parallel port keylocks may also be attached in series with most other keylocks.

New distributions of GM-SYS may shipped with a Sentinel SuperPro™ parallel port or USB keylocks. If your license requires a keylock, you will be asked whether to install the drivers during the installation. If you elect not to install the driver at this time, you may install the driver later by running the installation program in \gmsys\spro.

WARNING: You should not attach the keylock until after the driver is installed! USB keylocks, in particular, may be damaged during the driver installation procedure.

2.2.2 Geosoft Licensing

Copies of GM-SYS licensed from Geosoft, either “standalone” or with OASIS montaj, are protected by the Geosoft "Red Disk" license (5.1.x) or eLicensing (6.x). See yourGeosoft documentation for details.
2.3 CREATING A NEW MODEL

Select the New Model… option from the File Menu or click the New Model button on the Menu Tool Bar to activate the New Model Creation dialog box, shown on the following page. The new model creation process allows you to specify the initial parameters of your model, or you may accept the default settings. All of these parameters may be changed at a later time.

2.3.1 Overview of New Model Creation

A starting GM-SYS model consists of two blocks ("air" and "crustal rock"), and optional topography, and gravity and/or magnetics stations. All GM-SYS models extend to ±30,000 kilometers ("infinity") in the -X and +X directions to eliminate edge-effects. You may optionally specify up to 6 horizons which divide the crustal rock into horizontal layers as a starting point for your model. Within these crustal layers you will later create the structural and stratigraphic boundaries (using Split Block, Move Point, Import Horizon and other actions) which make up your completed model.

The New Model Creation dialog box is partitioned into four sections. The first section contains options for setting horizontal and depth extents of the model’s area of interest in the units of your choice and a radio button to allow you to specify starting horizons. The second section allows you to set the profile azimuth and relative model strike. The third section allows you to specify the locations of topographic points, gravity stations, and magnetic stations. The last section allows you to set the Earth’s magnetic field parameters.

2.3.2 Cross-Section Limits

Setting the X Range defines the initial View of the model; i.e., the portion of the model you will be ed-
The Z Range limits the vertical extents of the starting "crustal rock" block and the Z-extents of the initial View. In GM-SYS models, the Z-axis is positive down (depth), so positions above sea-level have negative Z-values. For convenience, some dialogs allow you to enter Z-values as elevations (positive up).

Selecting Add Flat Horizons brings up a dialog which allows you to enter up to six depths for horizons in your starting model. These horizons will extend from “- infinity” to “+ infinity” across your model, dividing the crustal rock into horizontal layers. For horizons above sea level (but below topography) enter negative “depths”.

2.3.3 Profile Azimuth/Relative Strike Angle

Setting these options orients your new model in space. This is necessary only for modeling magnetic response, but is good practice, regardless. The profile azimuth is relative to geographic North. The relative strike angle is relative to the profile azimuth. See Section 3.5 for a thorough discussion of these topics. If you are unsure of the appropriate values, you may accept the defaults and make changes later.

2.3.4 Topography and Gravity & Magnetics Stations

You may choose to have no topography, evenly-spaced topography at a constant elevation, or you may import topographic data points from a file. Selecting "none" produces a horizontal surface at elevation 0 with no points. Choosing the second option activates a Surface Topography dialog box (shown below), in which you may enter the Reference elevation (Z is positive up in this case), the X-coordinate of the first topographic point, the point spacing, and the total number of topography points. The "import from file" option allows you to select and browse an ASCII text file containing the X- and Z-coordinates of your topographic points in space-delimited format. Options to skip lines and/or select fields in the imported text file allow some flexibility in file formats. For instance, you may use the gravity data from an existing model to create topography (and gravity stations) for a second model by importing the .grv file and skipping the two header lines.

Options for creating gravity and magnetics stations operate in a similar manner, with a couple of exceptions. Selecting "none" for gravity or magnetics stations will result in no stations being created. If you don't have actual "observed" data, but wish to calculate the response for a hypothetical profile over your model, you must create "dummy" stations using either the "equally spaced..." or "import from file" options. (Remember: Gravity and/or magnetic stations are required so that GM-SYS may calculate the response of the model at these locations.) When importing gravity and magnetics station locations from ASCII text files, if a third field (column) exists, it will be imported as observed values.

2.3.5 Choosing the Gravity Anomaly to Model: Free-Air, Residual, or Bouguer

If you are attempting to fit calculated values to observed values of gravity, you may use free-air, residual, or Bouguer gravity values for the observed values. Note that the model calculations will include the contributions of the terrain above sea level using the selected densities. Therefore, if you use observed Bouguer anomaly values, you must either change the density of the "air block" to the Bouguer reduction density or convert the densities of all blocks above sea level to density contrasts relative to the Bouguer reduction density. Typical densities for various rock types may be found in Clark (1966), Dobrin and Savit (1988), or many other references.
2.3.6 Earth's Magnetic Field

The magnitude and direction of the Earth's magnetic field in the vicinity of your survey must be entered correctly for GM-SYS to properly calculate the magnetic response of the model. When modeling Rotated-to-the-Pole or Rotated-to-the-Equator data, you must enter the modified field direction in GM-SYS.

If you do not field magnitude and direction, the magnetic response can not be calculated. You will be prompted for this information each time you open the model until values are entered.

When you have entered all of the information, select the "Create" button and GM-SYS will generate your starting model. Be sure to save the model and any subsequent changes.

2.4 IMPORTING A MODEL FROM ANOTHER MODELING APPLICATION

Additional conversion options may be licensed to enable CVTGMS to convert flat ASCII files, digitized models, DXF files, and model files from other common modeling programs to GM-SYS model files. See Section 8 for more details regarding CVTGMS.

2.5 MENU OVERVIEW

All of the commands necessary for creating and manipulating GM-SYS models are available in the menus at the top of the Main Window. The menus are described briefly below. Each menu option or function is described in detail in Section 5.1.

File Menu

The File Menu controls model creation, saving, and printing/plotting functions. The Preferences are also accessed from this menu.

View Menu

You may store, edit, and recall screen views, or windows, of the current model from the View Menu. A view is defined by the current X and Z limits of the Cross Section, Anomaly, and Plan-View panes of the Model Window.

Overlay Menu

The Overlay Menu allows you to add and configure a variety of visual aids to your model, including bitmaps (if licensed), symbols, and LAS wells and Well markers. Global block color fill is also controlled in this menu. Display of each loaded object may be toggled and configured independently. Items in the Overlay Menu do not affect computation of the model response.

Display Menu

From the Display Menu you may toggle on and off the display of all features in the Model Window, with the exception of surfaces and gradients. The Display Menu is arranged so that items affecting each pane of the Model Window are grouped together. Single Block Response must be toggled on here in order to display the response curves. You may also toggle between cgs, SI, or µcgs units for displaying your model parameters.
Getting Started

Profile Menu

From the Profile Menu, you may set the geomagnetic field parameters, adjust the DC Shift values, globally change station elevations, and edit well-marker data. Spreadsheet may be accessed to edit the data profiles or edit block parameters.

Gradients Menu

From the Gradients Menu you may toggle on and off the display of gravity and magnetic gradients or individual gradient components. You may also choose whether to align the gradient component axes with the profile direction or compass direction. If GM-SYS is not registered to include gradient calculations, items in this menu may be either absent or "grayed-out" and inactive.

Action Menu

The Action Menu contains functions for editing the model. Only one function may be active at a time. Each of the items in the Action Menu enables specific actions when the left mouse button is pressed in the Model Window. These items are also available from the Action Tool Box. The Undo function is also accessible from the Action Menu or the Menu Tool Bar.

Compute Menu

From the Compute Menu you may control recalculation of the model response. "Autocalculation" of the gravity and/or magnetic response to changes in the model may be toggled on/off. You may also activate a total recalculation of gravity or magnetic response, if desired. The "calculate" or "total recalculate" options should be selected when the "model changed" flags appear in either of the anomaly panes.

Attempting to save an output grid with the Calc Geosoft Grid function will fail with an error message if the Grid Output option is not licensed.

Window Menu

The Window Menu controls the appearance and organization of open models within the Main Window. Open model windows may be tiled or cascaded, and model icons arranged to minimize desktop space requirements. A selection list allows you to select the active open model.

Help Menu

From the Help Menu you may access the on-line help which comes with GM-SYS. The About… option displays registration, version and technical support information for GM-SYS.
3. MODELING CONCEPTS

Forward modeling involves creating a hypothetical geologic model and calculating the geophysical response to that earth model. GM-SYS is a modeling program which allows intuitive, interactive manipulation of the geologic model and real-time calculation of the gravity or magnetic response. The GM-SYS Inversion option allows you to automatically optimize your model.

3.1 UNIQUENESS

Gravity and magnetic models are not unique; i.e. several earth models can produce the same gravity and/or magnetic response. Furthermore many solutions may not be geologically realistic. It is the task of the interpreter to evaluate the "geologic reasonableness" of any model.

3.2 DC SHIFT

A constant or DC shift usually must be subtracted from the calculated gravity and/or magnetic data to match the observed data. For gravity, this is necessary because the calculated value is an absolute gravity calculation for the model extending to 30,000 km in the ±X directions, and to some arbitrary depth (50 km by default). Observed data is generally corrected for the reference geoid, or referenced to some local datum. For magnetics, the calculated value is the deviation from the ambient earth field value, whereas another datum may have been used for the observed data.

In GM-SYS, a DC shift can be applied to the calculated curve to force the calculated curve and the observed curve to match.

GM-SYS allows you to apply a DC Shift in one of three ways:

1) GM-SYS can automatically calculate the DC Shift to minimize the RMS error, or
2) you may select a point at which the calculated and observed curves will be forced to match, or
3) you may enter the DC Shift explicitly. GM-SYS defaults to option 1, the automatic shift.

These options are available in the Profile Menu and the anomaly pane pop-up menus (See Section 5.1.5).

3.3 2-D MODELING

Two-Dimensional (2-D) models assume the earth is two dimensional; i.e. it changes with depth (the Z direction) and in the direction of the profile (X direction; perpendicular to strike). 2-D models do not change in the strike direction (Y direction). A 2-D model may be visualized as a number of tabular prisms with their axes perpendicular to the profile (see below); blocks and surfaces are presumed to extend to infinity in the strike direction.
3.4 2¾-D MODELING

2¾-D modeling, as implemented in GM-SYS, allows the prisms to be truncated at some distance in the plus and minus strike directions (± Y). It also allows the strike direction to be skewed relative to the profile azimuth. Beyond the ends of the prisms are new prisms of the same cross section, but with different densities and magnetic properties. GM-SYS 2¾-D models allow independent specification of the locations of the two ends of the prisms (blocks). They may be asymmetrically-positioned about the line of the profile or, if desired, both may be on the same side of the plane of the profile (Y=0) (see figure at left).

3.5 SKEWED MODELS

GM-SYS with 2¾-D enabled allows the strike direction to be skewed (i.e., not perpendicular) to the profile. The angle measured from the profile to the strike direction is entered as the "relative strike" under the Profile Menu. For profiles perpendicular to the strike, the relative strike is 90 degrees. For 2¾-D blocks, the Y-axis is in the direction of the model strike and may be non-orthogonal to the profile. The Y=0 reference point for each block is at the left-most point (minimum X) of the block. The figure below illustrates the relationship between the relative model strike, the profile azimuth, and the Y=0 reference point (labeled A).
3.6 INVERSION

Forward modeling involves creating a hypothetical geologic model and calculating the geophysical response to that earth model. GM-SYS, without the Inversion/Optimization option, is a forward modeling program allowing interactive manipulation of the earth model and real-time calculation of the gravity or magnetic response.

Inversion, optimization, or inverse modeling involves the reverse procedure. Starting with the observed geophysical response, an earth model that will provide the best fit to that data is calculated. Because gravity and magnetic calculations are non-linear, the calculations use an iterative process. The forward calculation equations are approximated by linear equations. A small change based on the linear equations is then made to the earth model, the linear approximations are recalculated for the new model and the process is repeated.

The Joint Inversion/Optimization option of GM-SYS allows the user to select the parameters they wish to free in the optimization process. It also allows the user to initiate and monitor the inversion process.

If the Joint Inversion/Optimization option has not been installed in the copy of GM-SYS currently running on the computer, the Invert option in the Action Menu and the Invert button on the Action Tool Box are "grayed-out" and inactive.

Gravity and magnetic models are not unique; i.e. several earth models can produce the same gravity and/or magnetic response. Furthermore, many solutions may not be geologically realistic. Because of this non-uniqueness, and because the process is non-linear, the final result or solution depends on the starting model. The better the starting model, the better the result. As the term optimization implies, Inversion is best used to make small changes to the model to obtain the final optimal fit to the observed data. Inversion should not be used to create a hypothetical earth model from a poorly-defined starting model.

GM-SYS allows the user to free up to 100 parameters for inversion. Parameters may include the X- and/or Z-position of a point, the susceptibility of a block, the density of a block, or the DC Shift between the observed and calculated curves.

Best results will be obtained using optimization if a limited number of parameters are allowed to be free. Examples would be inverting on densities of one or two bodies or inverting on the depth (Z and not X) of a basin, or thickness (Z and not X) of sediments.

3.7 COMPUTATIONAL BASIS FOR GM-SYS

The methods used to calculate the gravity and magnetic model response are based on the methods of Talwani et al., 1959, and Talwani and Heirtzler, 1964, and make use of the algorithms described in Won and Bevis, 1987. Two-and-a-half dimensional calculations are based on Rasmussen and Pedersen, 1979. Methods proprietary to NGA have been used to improve the efficiency and speed of the calculations and to make them better suited to an interactive environment. For validation, the results from GM-SYS have been found to be comparable to other published results; see Campbell, 1983.

The GM-SYS inversion routine utilizes a Marqardt inversion algorithm (Marqardt, 1963) to linearize and invert the calculations. GM-SYS uses an implementation of that algorithm for gravity and magnetics developed by the USGS and used in their computer program, SAKI (Webring, 1985).

GM-SYS uses a two-dimensional, flat-earth model for the gravity and magnetic calculations; that is, each structural unit or block extends to plus and minus infinity in the direction perpendicular to the profile. The earth is assumed to have topography but no curvature. The model also extends plus and minus 30,000 kilometers along the profile to eliminate edge-effects.
In GM-SYS, stations (points at which gravity or magnetic values are observed and calculated) should be outside of the source material; i.e., in an area of the model with a density, magnetization, and susceptibility equal to zero.

3.8 SINGLE BLOCK RESPONSE

Users may find it instructive to view the contribution of an individual block relative to the overall model response. The Single Block Response feature allows you to calculate and display the individual contributions of up to six blocks. Each response curve is color-coded to match the highlighted block. The response of each block is calculated relative to the properties of the “Air Block” which surrounds the model; the magnetic properties of this block are always zero, while the density is typically zero or equal to the Bouguer reduction density.

3.9 ROTATED-TO-POLE & ROTATED-TO-EQUATOR MAGNETIC DATA

The user may choose to model rotated-to-pole (RTP) or rotated-to-equator (RTE) magnetic data in GM-SYS. When using RTP data, the inclination and declination of the Earth's field must be set to 90° and 0°, respectively. For RTE data, use an inclination of 0° and the correct declination for your survey area. Use the same magnitude for the Earth's field that you would when modeling Total Field magnetic data. The Set Mag. Field option may be accessed either through the Profile Menu or the Magnetic Anomaly pop-up menu.

When you build a new model, GM-SYS prompts you for the Earth’s field information. Without these values, no magnetic response can be calculated.

3.10 CHOICE OF GRAVITY ANOMALY: FREE-AIR, RESIDUAL, OR BOUGUER

If you are attempting to fit calculated values to observed values of gravity, you may use free-air, residual, or Bouguer gravity values for the observed values. Note that the model calculations will include the contributions of the terrain above sea level using the selected densities. Therefore, if you use observed Bouguer anomaly values, you must either change the density of the "air block" to the Bouguer reduction density or convert the densities of all blocks above sea level to density contrasts relative to the Bouguer reduction density. Typical densities for various rock types may be found in Clark (1966), Dobrin and Savit (1988), or many other references.

3.11 MAGNETIC UNITS

By default, GM-SYS uses the Gaussian (cgs) system of units for magnetic terminology and quantities (susceptibility, magnetization, magnetic induction and magnetic field intensity). The user may choose to display using International System (Le Système International d'Unités or SI) or micro-cgs (µcgs) units by selecting the appropriate option in the Display Menu.

Geophysical literature is currently in a state of transition between cgs units and SI units. Many geophysicists continue to use cgs or µcgs units although SI units do appear in the literature. Conversion between cgs and SI units is, at best, confusing. Five fundamental terms need to be defined for this discussion. These terms are (from Blakely, 1995, Grauch, et al.,1993, and Shive, 1986):

- \(B \) magnetic induction or magnetic field;
- \(H \) magnetic field intensity;
- \(J \) magnetic polarization;
- \(M \) magnetization;
- \(\chi \) magnetic susceptibility.

These quantities are defined in different ways in the two systems by the following equations:

cgs

\[
B = H + 4\pi M \\
J = M
\]
Table 3.1 GM-SYS Units

<table>
<thead>
<tr>
<th>Quantity</th>
<th>cgs</th>
<th>SI</th>
<th>GM-SYS Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔB</td>
<td>gamma</td>
<td>nanotesla</td>
<td>Calculated & Observed Magnetic Anomalies</td>
</tr>
<tr>
<td>H (or B)</td>
<td>gamma</td>
<td>nanotesla</td>
<td>Magnitude of Earth's Magnetic Field</td>
</tr>
<tr>
<td>ΦI</td>
<td>degree</td>
<td></td>
<td>Inclination of Earth's Magnetic Field</td>
</tr>
<tr>
<td>FD</td>
<td>degree</td>
<td></td>
<td>Declination of Earth's Magnetic Field</td>
</tr>
<tr>
<td>M_r (or J_r)</td>
<td>emu/cm³</td>
<td>A/m</td>
<td>Remanent Magnetization†</td>
</tr>
<tr>
<td>MI</td>
<td>degree</td>
<td></td>
<td>Inclination of Remanent Magnetization</td>
</tr>
<tr>
<td>MD</td>
<td>degree</td>
<td></td>
<td>Inclination of Remanent Magnetization</td>
</tr>
<tr>
<td>χ or S</td>
<td>dimensionless</td>
<td></td>
<td>Susceptibility‡§</td>
</tr>
</tbody>
</table>

† Appears as "M" in displayed Block Parameters
‡ Appears as "S" in displayed Block Parameters
§ Also referred to as volume susceptibility

Table 3.2 Magnetic Conversion Factors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>cgs</th>
<th>SI</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic field (B)</td>
<td>gauss</td>
<td>tesla (T)</td>
<td>1 gauss=10^4 T</td>
</tr>
<tr>
<td>Magnetic field (B)</td>
<td>gamma†</td>
<td>nanotesla‡ (nT)</td>
<td>1 gamma†=1 nT‡</td>
</tr>
<tr>
<td>Field intensity (H)</td>
<td>oersted (Oe)</td>
<td>A/m</td>
<td>1 oersted=$10^3/4\pi$ A/m</td>
</tr>
<tr>
<td>Magnetization (M)</td>
<td>gauss§</td>
<td>A/m</td>
<td>1 gauss§=10^3 A/m</td>
</tr>
<tr>
<td>Susceptibility (χ or S)</td>
<td>dimensionless</td>
<td></td>
<td>1 (cgs)=4π (SI)</td>
</tr>
<tr>
<td>Koenigsberger ratio (Q)</td>
<td>dimensionless</td>
<td></td>
<td>1 (cgs)=1 (SI)</td>
</tr>
</tbody>
</table>

modified from Blakely (1995)

† 1 gamma = 10^5 gauss
‡ 1 nanotesla = 10^{-9} tesla
§ Also called emu/cm³.
SI

\[B = \mu_0 (H + M) \]
\[J = \mu_0 M \]

where \(\mu_0 = 4\pi \times 10^{-7} \text{H/m} \) is the permeability of free space.

The magnetization \(M \) is the vector sum of the induced and remanent components of magnetization:

cgs and SI

\[M = M_i + M_r \]

Induced magnetization aligns with the direction of the Earth's magnetic field \(H \) and is proportional to the magnetic susceptibility \(\chi \) so that
cgs and SI

\[M_i = \chi H \]

The relative importance of remanent magnetization to induced magnetization is expressed by the Koenigsberger ratio, \(Q \):

\[Q = |M_r| / |M_i| \]

Note that \(B, H, J \) and \(M \) are vector quantities in the definitions above.

In GM-SYS, the vector direction for \(M_r \) (or \(J_r \)) is input by the user as the remanent inclination (MI) and declination (MD) in Block Parameters. The vector direction for \(H \) is input by the user as the inclination (FI) and declination (FD) of the Earth's magnetic field. The calculated and observed anomalies in GM-SYS are defined as the magnitude of the anomalous component of \(B \) in the direction of the Earth's field direction. This is often referred to as the total-field anomaly (\(\Delta B \)).

GM-SYS uses the following cgs and SI units (see Table 3.1):

To convert between SI units and cgs units, use Table 3.2 (modified from Blakely, 1995). For example, divide magnetization expressed in A/m by 10^4 to calculate the magnetization in gauss.

Table 3.3 Example Susceptibilities

<table>
<thead>
<tr>
<th>Lithology</th>
<th># of Samples</th>
<th>Range (cgs)</th>
<th>Average cgs</th>
<th>Average (\mu \text{cgs})</th>
<th>Average SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Igneous</td>
<td>78</td>
<td>0.0000044 - 0.009711</td>
<td>0.002596</td>
<td>2,596</td>
<td>0.0326</td>
</tr>
<tr>
<td>Acidic Igneous</td>
<td>58</td>
<td>0.000003 - 0.006527</td>
<td>0.000647</td>
<td>647</td>
<td>0.00813</td>
</tr>
<tr>
<td>Metamorphic</td>
<td>61</td>
<td>0 - 0.005824</td>
<td>0.000349</td>
<td>349</td>
<td>0.00439</td>
</tr>
<tr>
<td>Shale</td>
<td>137</td>
<td>0.000005 - 0.001478</td>
<td>0.000052</td>
<td>52</td>
<td>0.00065</td>
</tr>
<tr>
<td>Sandstone</td>
<td>230</td>
<td>0 - 0.001665</td>
<td>0.000032</td>
<td>32</td>
<td>0.00040</td>
</tr>
<tr>
<td>Limestone</td>
<td>66</td>
<td>0.000002 - 0.000280</td>
<td>0.000023</td>
<td>23</td>
<td>0.00028</td>
</tr>
<tr>
<td>Dolomite</td>
<td>66</td>
<td>0 - 0.000075</td>
<td>0.000008</td>
<td>8</td>
<td>0.00010</td>
</tr>
</tbody>
</table>

modified from Dobrin and Savit (1988)
Notes:
1. Although susceptibility is dimensionless, it differs by a factor of 4π between the two systems.
2. The defining equations in this table require Earth's magnetic field values to be given in oersted (cgs) or A/m (SI). However, in the geophysical literature, the Earth's magnetic field values are commonly given in gammas (cgs) or nanotesla (SI). GM-SYS expects gammas (cgs) or A/m (SI).

Some traditional geophysical references (e.g., Dobrin and Savit, 1988) list susceptibilities and magnetization in mcgs units ($1\mu\text{cgs} = 10^{-6} \text{cgs}$). Simply divide μcgs units by 10^6 to use in GM-SYS. Some examples of measured susceptibilities using cgs, μcgs and SI units are provided in a table on the following page. Note the wide range of susceptibilities for each rock type.

More extensive measurements of magnetic properties may be found in Carmichael (1982) and Clark (1966). For a more detailed description of magnetic units, conversions, rock magnetism and theory, see Shive (1986), Grauch, et al. (1993), and Blakely (1995).

3.12 GRAVITY UNITS

By default, GM-SYS uses the Gaussian (cgs) system of units for gravity terminology (gravitational acceleration and density). The user may choose to display using International System (Le Système International d'Unités or SI) units by selecting the appropriate option in the Display Menu. Selecting *Use micro-cgs units* in the Display Menu will cause GM-SYS to use cgs units for gravity terminology and μgs units for magnetic terminology. Geophysical literature is currently in a state of transition between cgs units and SI units. Many geophysicists continue to use cgs units although SI units do appear in the literature.

By default, gravity anomalies are displayed in mGal for both cgs and SI, but you may toggle between mGal or μGal by right-clicking on the Gravity Axis and selecting *Change Units*.

The cgs unit of acceleration is cm/sec2, often referred to as the Gal (short for "Galileo"), where $1 \text{Gal} = 1$ cm/sec2. The geophysical literature commonly reports gravitational attraction in units of mGal ($1 \text{mGal} = 10^{-3} \text{Gal}$). The SI unit of acceleration is m/sec2.

The cgs unit of density is gm/cm3 and the SI unit of density is kg/m3. GM-SYS expects gravity values to be in mGal and densities to be in gm/cm3 or kg/m3.

To convert between SI units to cgs units, use the conversion table below. For example, divide densities reported in kg/m3 by 10^3 to calculate the densities in gm/cm3. The density for each block in a GM-SYS model appears as "D" when the block parameters are displayed.

Some examples of measured rock densities using cgs and SI units are provided in Table 3.5 shown below.

3.13 GRAVITY & MAGNETIC GRADIENTS

The GM-SYS Gravity/Magnetic Gradient option adds the capability to calculate any or all of six gradient tensor components of the gravity field and the

<table>
<thead>
<tr>
<th>Quantity</th>
<th>cgs</th>
<th>SI</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration (G_2)</td>
<td>mGal</td>
<td>m/sec2</td>
<td>$1 \text{mGal} = 10^5 \text{m/sec}^2$</td>
</tr>
<tr>
<td>Density (D or ρ)</td>
<td>gm/cm3</td>
<td>kg/m3</td>
<td>$1 \text{gm/cm}^3 = 10^3 \text{kg/m}^3$</td>
</tr>
</tbody>
</table>
vertical gradient of the total magnetic field. Most of the gradient features may be accessed in the Gradients Menu. The Enable Grav. Gradients and Enable Magn. Gradient options in the Gradients Menu are "grayed-out" and inactive if GM-SYS is not registered to include these options.

Gradient features include:
- Autocalculation of displayed gradient components;
- Calculation and display of the individual components or all magnetic and/or gravity gradient components may be toggled on/off;
- Alignment of the gradient component axes may be toggled between the profile direction or compass direction;
- Plotting and anomaly scaling are controlled with the standard GM-SYS functions.

Limitations:
1) Standard gravity (Gz) or magnetics (Bt) values must exist at each gradient station. If standard values do not exist when GM-SYS loads a model with gradient values, GM-SYS will create "dummy" Gz and/or Bt values which are set to zero. The user can toggle (on/off) the display of any observed or calculated gradient component using options in the Gradients Menu.

Note: X- and Z-coordinates in the gravity (.grv) and gravity gradient (.gdo) files must be the same. This is also true of magnetics (.mag) and magnetic gradient (.mdo) files. If the number of observed gradient stations is different than the number of standard (gravity or magnetics) stations, the smaller file must be "padded" with dummy stations to match the larger file. Failure to do this may result in corrupt models. Using the Edit Anomaly function, found in the Profile Menu or Anomaly Pane pop-up menus, to add or change stations will change both files, thereby avoiding this problem.

Table 3.5 Rock Densities

<table>
<thead>
<tr>
<th>Lithology</th>
<th># of Samples</th>
<th>ρ Range cgs</th>
<th>ρ Average cgs</th>
<th>ρ Range SI</th>
<th>ρ Average SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Igneous</td>
<td>83</td>
<td>2.09 - 3.17</td>
<td>2.79</td>
<td>2090 - 3170</td>
<td>2790</td>
</tr>
<tr>
<td>Metamorphic</td>
<td>114</td>
<td>2.40 - 3.10</td>
<td>2.74</td>
<td>2400 - 3100</td>
<td>2740</td>
</tr>
<tr>
<td>Dolomite</td>
<td>120</td>
<td>2.36 - 2.90</td>
<td>2.70</td>
<td>2360 - 2900</td>
<td>2700</td>
</tr>
<tr>
<td>Acid Igneous</td>
<td>105</td>
<td>2.30 - 3.11</td>
<td>2.61</td>
<td>2300 - 3110</td>
<td>2610</td>
</tr>
<tr>
<td>Limestone</td>
<td>487</td>
<td>1.93 - 2.90</td>
<td>2.54</td>
<td>1930 - 2900</td>
<td>2540</td>
</tr>
<tr>
<td>Shale</td>
<td>322</td>
<td>1.77 - 2.45</td>
<td>2.42</td>
<td>1770 - 2450</td>
<td>2420</td>
</tr>
<tr>
<td>Sandstone</td>
<td>617</td>
<td>1.61 - 2.76</td>
<td>2.32</td>
<td>1610 - 2760</td>
<td>2320</td>
</tr>
</tbody>
</table>

modified from Dobrin and Savit (1988)
2) Both the standard gravity (Gz) curve and gravity gradient curves are plotted in the gravity anomaly window. Similarly, the total field and magnetic gradient curves are plotted in the magnetic anomaly window. In each window, the gradient components are color-coded with a legend displayed in the upper-left corner of the anomaly window. A question mark (?) appears next to the legend items if the calculated curve has not been updated to reflect changes in the geologic model; i.e., "?" serves as a "model changed" flag. The legend entry for a component is only visible when display of the component is enabled.

3.13.1 Gradient Axis

The "Profile/Compass" Axis toggle in the Gradients Menu allows the user to change the alignment of the X-axis for gradient calculations. The X-axis for gradient calculation defaults to being coincident with the profile azimuth (PROFILE). The COMPASS option forces the X-Direction in the gradient calculations to be due East (90°). The Profile Azimuth must be set correctly, relative to True North, for this option to function properly.

3.13.2 Magnetic Gradient Display and Units.

The total magnetic field (Bt) and the vertical gradient (Btz) are both displayed in the magnetic anomaly window. Display of the calculated and observed gradient data may be toggled on and off in the Gradients Menu. GM-SYS stores magnetic gradient values internally in units of gammas/meter, although units may be displayed and edited in units of gammas/meter, gammas/kilometer, nT/meter, or nT/kilometer. The units used may be changed by activating the Magnetic Anomaly axis pop-up menu (see Section 5.3.8.3) and selecting the appropriate units from the secondary pop-up menu.

3.13.3 Gravity Gradients Display and Units

"Normal gravity" (Gz) and six gradient tensor components are displayed in the gravity anomaly window.

- vertical gradient of the vertical component of gravity (zz);
- gradient in the X direction of the X component of gravity (xx);
- gradient in the Y direction of the Y component of gravity (yy);
- gradient in the X direction of the vertical component of gravity (zx);
- gradient in the Y direction of the vertical component of gravity (zy);
- gradient in the X direction of the Y component of gravity (xy);

The individual gradient components can be toggled on and off in the Gradients Menu. Gradient values are input and displayed in Eotvos Units.

1 Eotvos Unit

= 10⁹ gal/cm
= 10⁶ mGal/cm
= 10⁴ mGal/m
= 10¹ mGal/km

3.14 GRID OUTPUT

The Grid Output Option allows you to calculate the response of your model over an area and generate a Geosoft grid (.grd) file as output. If the model includes a coordinate transformation in the ECS file, the output grid will use the original ground units and will be correctly rotated.

You may elect to calculate the gravity or magnetic grid response, or one of the gradient components if the Gradients Option is licensed. Calculate the response at a specified constant terrain separation or constant elevation. Enter minimum and maximum X and Y limits and the grid cell size, or accept the default limits, which are determined from the Plan View extents.
3.15 SYMBOL DISPLAY

Import one or more ASCII files with X, Z coordinates, optionally including symbol index, dip and susceptibility fields, and display symbols over the Cross Section pane. Each symbol file may be configured independently to associate symbol indices with symbol type, color, line weight, and size. Each symbol file may be toggled on/off independently. Entries in a symbol file that include dip and susceptibility fields will plot with ‘dip-tails’ scaled by susceptibility.

Use Symbol Plotting to display dip measurements, depth-solutions from NGA’s Depth-to-Basement GXs, shotpoint locations, tie-line crossings, interpreted seismic horizons, and more. GM-SYS comes with a set of default symbols in `gmwin.sdf`, the symbol definition file. Use the predefined symbols, or add your own. Symbols do not affect GM-SYS calculations in any way.

3.16 WELL DISPLAY

GM-SYS incorporates two types of wells, the standard GM-SYS well markers and LAS well files (v. 1.2 and 2.0). Like symbols and bitmaps, wells provide visual aids to modeling and do not affect computation of the model response. You may assign a predefined well symbols, or add your own symbols. LAS wells may display up to two log curves with user-configured scale, color and line weight. Use well markers to mark depth(s) to known horizons.

3.17 BITMAP DISPLAY

The Seismic Bitmap Option enables GM-SYS to display bitmaps in the background of the cross section pane for use as a modeling aid. Bitmaps may be seismic depth sections, scanned cross sections, depth-to-basement picks; any image that may be registered in GM-SYS model space (i.e. XZ coordinates, where Z is depth). Although not all formats have been tested, the ImageMagick convert program incorporated into the GM-SYS distribution should read the following image formats without additional “helper” applications:

- BMP: Microsoft Windows bitmap image
- BMP24: Microsoft Windows 24-bit bitmap image
- CMYK: Raw cyan, magenta, yellow, and black bytes
- DCX: ZSoft IBM PC multi-page Paintbrush
- DIB: Microsoft Windows bitmap image
- FAX: Group 3 FAX
- FITS: Flexible Image Transport System
- G3: Group 3 FAX
- GIF: CompuServe graphics interchange format
- GIF87: CompuServe graphics interchange format (version 87a)
- GRAY: Raw gray bytes
- ICB: Truevision Targa image
- ICO: Microsoft icon
- JBG: Joint Bi-level Image experts Group interchange
- JBIG: Joint Bi-level Image experts Group interchange
- JPG: Joint Photographic Experts Group JFIF
- JPEG: Joint Photographic Experts Group JFIF
- JPEG24: Joint Photographic Experts Group JFIF
- MIFF: Magick image format
- MONO: Bi-level bitmap in least-significant-byte first order
- P7: Xv thumbnail format
- PBM: Portable bitmap format (black and white)
- PCD: Photo CD
- PCDS: Photo CD
- PCL: Page Control Language
- PCT: Apple Macintosh QuickDraw/PICT
- PCX: ZSoft IBM PC Paintbrush
- PIC: Apple Macintosh QuickDraw/PICT
- PICT: Apple Macintosh QuickDraw/PICT
- PICT24: 24-bit Apple Macintosh QuickDraw/PICT
- PGM: Portable graymap format (gray scale)
- PMX: Windows system pixmap (color)
- PNG: Portable Network Graphics
- PNM: Portable anymap
- PPM: Portable pixmap format (color)
- PSD: Adobe Photoshop bitmap
- PTIF: Pyramid encoded TIFF
- PWP: Seattle Film Works
- RAS: SUN Rasterfile
- RGB: Raw red, green, and blue bytes
- RGBA: Raw red, green, blue, and matte bytes
- RLA: Alias/Wavefront image
- RLE: Utah Run length encoded image
- SFW: Seattle Film Works
- SGI: Irix RGB image
- SUN: SUN Rasterfile
- TGA: Truevision Targa image
- TIF: Tagged Image File Format
- TIFF: Tagged Image File Format
- TIFF24: 24-bit Tagged Image File Format
- TTF: TrueType font
- VDA: Truevision Targa image
- VST: Truevision Targa image
- X: X Image
<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBM</td>
<td>X Windows system bitmap (black and white)</td>
</tr>
<tr>
<td>XPM</td>
<td>X Windows system pixmap (color)</td>
</tr>
<tr>
<td>XV</td>
<td>Khoros Visualization image</td>
</tr>
<tr>
<td>XWD</td>
<td>X Windows system window dump (color)</td>
</tr>
</tbody>
</table>
4. MODEL ELEMENTS

A GM-SYS model has four main components; the structural (geologic) model, additional external data (i.e. wells, symbols, backdrops, and LAS well curves), gravity stations and magnetic stations. These features are illustrated in the simple model at left. You may change the default symbol and line colors, sizes, and weights, and fonts in the Preferences dialog accessed from the File Menu.

Conceptually, the model is a 2-D or 2¾-D cross section extending to infinity to the left (-X) and the right (+X). The Z-axis of the cross section displays depth (i.e. Z is positive down). Areas of constant density and magnetic properties are delineated by closed polygons separated by surfaces defined by two or more points. In 2-D models, these polygons, or “blocks” extend to infinity in the third dimension (+Y) into and out of the screen or page. In 2¾-D models, these blocks may be truncated at a given distance from the plane of the profile.

4.1 SURFACES

To GM-SYS, the model is actually composed of lines that define the surfaces between areas of differing density or magnetic properties. You are able to change the surfaces by moving, deleting, and adding points that define these boundaries. The top of a model is a surface which defines the topography of the cross section. The default colors are green for 2-D surfaces and dark green for 2¾-D surfaces.

Horizons are one or more contiguous surfaces connected end-to-end (no branching).

4.2 POINTS

A surface is defined by a series of two or more points or vertices. Straight line segments connecting these points make up the surfaces.

4.3 BLOCKS

A polygon, or a block, is an area of constant density and magnetic properties and strike (Y) extent. The parameters of a block are the name, the density, the susceptibility (which combined with the Earth's magnetic field gives the induced component of the magnetic anomaly caused by a block), the magnitude, declination and inclination of the remanent magnetization, and velocity. Blocks also may be given a fill pattern with fore-
background and/or background color for display and plotting purposes.

If the block is 2-D, these properties extend to “infinity” in the +Y and -Y directions. If the block is 2¾-D, the “main” block has a +Y and/or -Y limit and the “block” extending from this limit to infinity may be assigned different properties from the “main” block. You may elect to assign separate fill pattern and/or color to the “+Y-” and “-Y-blocks”, which will only be displayed in the Plan View.

4.3.1 Block Labels

Each block is assigned a name, which may be changed with the Examine option or within the Block Parameter spreadsheet. When the Block Labels option in the Display Menu is toggled on, all block names are displayed. You may toggle the display of individual block labels off in the Examine Block dialog. Note: the default position for a block name is the center of the block. A label for a newly-created block (e.g. using Split Block) may default to a position outside of the current view.

Block labels may be moved using the Move Label command, found in the Action Menu or the Action Tool Box (Section 5.1.7). To move the label for a newly-created block on-screen, activate the Move Label command and select "Snap Mode". Click the mouse within the new block to move the label to that point.

4.3.2 Block Data

Each block has a density, susceptibility, remanent magnetization, and velocity assigned to it. If the block is 2-D, these properties extend to “infinity” in the +Y and -Y directions. If the block is 2¾-D, it has a +Y and/or -Y limit and the “block” extending from this limit to “infinity” may be assigned other properties. Information for the -Y and +Y portions of a 2¾-D block are not displayed, but may be viewed and changed using Examine Block or within the Block Parameter spreadsheet. Surfaces surrounding blocks with 2¾-D limits are displayed with a different color in the cross section and plan view (default is olive). You may change the default color or line style in the Preferences.

If either or both of the Grav. Info or Magn. Info options in the Display Menu are checked, the information for the “main” block is displayed beneath the block label for each block. Magnetic remanence parameters are only displayed if the remanent magnetization is non-zero. By default, density, susceptibility, and remanence values are displayed to three significant figures, but this may be changed in the Preferences.

4.4 BACKDROP IMAGES

Backdrop images are used as a visual aid to model construction, but do not affect the computations performed by GM-SYS. GM-SYS will import a wide variety of image formats with the Seismic Bitmap option. If an image is too large to load, the user may elect to have GM-SYS scale the image to a more manageable size.

By default, the image will be scaled to fill the current cross-section view. If you know the approximate coordinates of the image corners, you may specify these values when loading the image. Once the image is loaded, use the Register Backdrop function to precisely register the image.
The Register Backdrop function allows you to precisely scale the loaded image by assigning model coordinates (X,Z) to two pixel locations in the image.

4.5 SYMBOLS

Symbols are another visual aid that does not affect the computations. Use symbols to show the locations of depth-to-basement picks, strike & dip measurements, seismic horizons, or any other reference location that might aid in your model development or presentation.

Symbol files are space-delimited ASCII files that contain X, Z, a symbol flag, and optionally dip and susceptibility values for each symbol location. Multiple symbol files may be displayed in a model and each may be configured independently.

The available symbols are defined in gmwin.sdf, the symbol definition file. You may add symbol definitions by editing this file with a text editor.

4.6 WELL MARKERS AND LAS WELL FILES

Wells are used as a type of annotation, but are not used in the computations performed by GM-SYS. GM-SYS allows two types of wells, the standard well markers and LAS well files (v. 1.2 and 2.0).

By displaying a well marker, you can show depths of various stratigraphic horizons or other geological markers. This data can come from well logs, core samples, magnetotellurics, resistivity studies, geologic maps, or any other source you may have. It is useful to have these annotations on the screen to keep track of all of the geological and geophysical constraints on the model.

The locations of well horizons are stored as depth beneath the ground surface (see Section 7.8) and may be edited from the Profile Menu (Section 5.1.3).

Each LAS Well file may be independently configured to show up to two log curves. Specify the well location, symbol, and up to two log curves for display. Configure scale, color, and line weight for each curve.

4.7 GRAVITY AND MAGNETIC STATIONS

The observed gravity and magnetics profiles are composed of stations. These stations are the locations where gravity and/or magnetic measurements have been made and where the model response will be calculated. Gravity stations generally lie on the topography of the model if they are land-based gravity readings. Magnetic stations may be on land or at some altitude, in the case of an aeromagnetic survey. When GM-SYS calculates the gravity or magnetic response of a model, it will calculate and plot the total response of the model at each station. The observed response at each station over the cross section will also be plotted. This will allow you to model a cross section to match existing data.

Actual observed data are not necessary for the use of GM-SYS, but would normally be used when fitting a cross section to observed data. If observed data are unavailable, dummy station locations must be entered as calculation points.
5. GM-SYS Interface

The GM-SYS interface consists of a menu system, Menu Tool Bar, the Action Tool-Box, the Model Space, and the Status Bar. The Model Space may contain one or more models in separate Model Windows. GM-SYS is most commonly used as a stand-alone application, but may be run in linked mode from within OASIS montaj.

5.1 Menus

When GM-SYS is started without specifying an initial model, only three menus with limited options are available: the File Menu, Window Menu and the Help Menu. The menu system expands to include additional options when a model is loaded. Many of the menu options may also be found in the context-sensitive pop-up menus described in Section 5.3.8.
5.1.1 File Menu

The File Menu controls file access, printing and plotting functions. The New Model…, Open Model… and Save Model options are also accessible from the Menu Tool Bar.

New Model and Open Model

The New Model… option activates the New Model Creation dialog (discussed in Section 2.3), which guides you through the creation of a starting model. The Open Model… option allows you to open any GM-SYS model (default extension .sur).

Save Model and Save as

The Save Model and Save as… options overwrite the previous version of the model or allow you to choose a new or different model name, respectively. For the Save as… option, if a model name is already in use, GM-SYS prompts you with a message asking whether you wish to overwrite the existing model. Models are saved in a group of eight to ten files with the same name and various extensions (See Section 7). Hence, it is not recommended that you save models with an extension other than .sur.

Close

The Close option closes the active model, prompting you to save any changes that have occurred since the last Save Model command. Models may also be closed using the controls embedded in the window-dressing of the Model Window.

Preferences

The Preferences... option allows you to personalize your GM-SYS environment. Preferences can be set for file locations, the model window, and miscellaneous items.

In the Files dialog you may select default locations for your model files, backdrop images, and backup files generated by the AutoSave feature. With AutoSave enabled, GM-SYS will save all open model files at the user-specified interval. In the event of a system failure or power outage, these files may be recovered during the next GM-SYS session. The backup files are deleted when GM-SYS exits normally.

Preferences dialog box

The Model Windows preference selection includes the following three dialog menus: Fonts, Anomalies, and Cross Section.

The Fonts dialog allows you to specify fonts used for each part of the GM-SYS display.

The Anomalies dialog allows you to set the color, line style, and weight of each data component in the anomaly display. You may also specify whether each component’s observed data and/or calculated curve is displayed by default when GM-SYS opens.
The Cross Section dialog allows you to configure the color, line style, and weight of the line elements that comprise the Cross Section display. You may also set the number of decimal places to use when displaying density, susceptibility, or remanent magnetization values; these values apply to the Anomaly spreadsheet, as well.

In the Miscellaneous dialog, you may set the maximum number of “Undos” and “Previous Views” saved for each model during a modeling session. You may select the default units GM-SYS will use, which may be overridden on a model-by-model basis.

Beginning with GM-SYS version 4.6, extensions and changes have been introduced to the .BLK, .SUR, .ECS, and .GMS file formats. By default, GM-SYS uses the new formats when saving a model. If you wish to remain compatible with earlier versions of GM-SYS, you may uncheck this box. Your models will not retain block color/pattern information and will not load bitmap files or symbol files. Some large models may fail to load with a “Too many Surfaces” error message.

Print

The Print… option generates a precisely-scaled plot of your model for printing or importing into graphics applications. The Print dialog, discussed in Section 6, allows you to set the vertical scale of each pane and the model horizontal scale, vertical exaggeration, and model and axis headings. You may specify font sizes and font styles. GM-SYS constructs an outline preview of the model layout prior to printing directly to the installed printer or to a file for printing later.

Exit

The Exit option will close all open model windows and terminate GM-SYS. You will be prompted to save changes to each open model before it is closed.

You may also exit GM-SYS by using the controls embedded in the Main Window window-dressing.

Previously Opened Model List

GM-SYS maintains a list of previously-opened model files at the bottom of the File Menu. You may open any of the listed models by selecting the model name from the list. The number of saved file names may be configured in the Preferences.

5.1.2 View Menu

To GM-SYS, a View is a stored set of coordinates specifying the boundaries of the Model, Anomaly, and Plan View panes and the depth of the Plan View. Views are useful when you wish to repeatedly edit or plot the same portion of the model. Using the functions built into the View Menu you may save, edit, replace, and delete views, change to a previously saved view, and change the order of saved views.

Previous View

The Previous View option allows you step back through a stack of saved or unsaved views generated during the current editing session. Separate view stacks are constructed for each model opened during an editing session. A view is placed on the stack whenever the zoom functions are used or the range of any pane in the Model Window is changed. The number of views remaining in the stack is displayed as part of the Previous View option. By default, GM-SYS will hold up to 20 views in the stack. The depth of the stack can be changed in File|Preferences...|Miscellaneous. The Previous View stack for a model is cleared when you close the model or exit GM-SYS.
Mark Current View

When the range of the display is changed by utilizing a scroll bar, GM-SYS does not automatically save the view on the Previous View stack. Selecting Mark Current View will explicitly place the current view on the stack.

Add Current View

This option allows you to save the current view at the bottom of the View List, without having to specify a name. The view name will default to "New View #?" where "?" is the position of the view in the list. You may change the name or any other parameters of the view using the Edit Views option.

Edit Views

The Edit Views option activates the View List dialog. The View List dialog allows you add, delete, or change views in the list that appears at the bottom of the View Menu.

The Up and Dn buttons allow you to reorder your view list; e.g. you could move the "Salt Dome" view to the top (default) position. When an existing view is highlighted, the Edit button activates the View dialog (following page). This dialog allows you to change the name and/or the limits of each pane in the Model Window for that view. Use the Repl. W/ CView button to replace the highlighted view with the current screen configuration.

View List

The first view in the list, named "Start up" by default, is the initial view displayed when you open the model. The "Infinity" view, listed second by default, shows you the entire model, extending from -30,000 km to +30,000 km along the profile axis.

To add a new view, first arrange your display by setting the limits for each pane or by using the scroll bars. Then select Edit Views from the View Menu and choose the Add Current View button. The View dialog will display the "New View" with the parameters set to the current screen configuration. Adjust the values if necessary, give the view a new name and click "OK." The new view will be added to the numbered list. You may then reorder the views if you wish.
5.1.3 Overlay Menu

The Overlay Menu controls model elements which provide a visual guide to model building or otherwise enhance the appearance of your model, but do not affect calculations.

Backdrop

This Intermediate function allows you to place a registered bitmap image in the background of the cross-section pane of the model. The image may be a depth-scaled seismic section, a geologic cross section scanned from a publication, a hand sketch, or any other image that aids in development of your model.

Enable Backdrop

The Enable Backdrop selection toggles on/off the display of the backdrop image. This selection must be set on to display a backdrop image. You may also set this toggle in the Backdrop Image Setup dialog described below.

Load Backdrop

Selecting Load Backdrop will bring up the "Backdrop Image Setup" dialog, as shown below. If you choose a file type other than BMP, GM-SYS uses ImageMagick to import the image. A thumbnail of the image will be displayed after it has been loaded.

Initially, the image will be scaled to approximately fill the current View. To adjust the position of the image in the cross-section pane, enter the User Coordinates to match the outside edges of the image. Make sure the Enable Backdrop box is checked before you click “OK.”

Backdrop Registration

You may fine-tune the image registration by assigning model coordinates to two locations in the image, using the procedure outlined below. Using locations near opposite corners of the image works best.

1) Zoom to the first registration point, if necessary. Right-click in the Cross Section pane to display a pop-up menu with the Register Image option. Select the 'Select 1st Reg. Point' item from the pop-up submenu. The '1st Reg. Point' window will appear, as shown below.

2) Click on the new registration point on the image. Its current model coordinates will be displayed in the dialog. Enter the new coordinates and click 'OK'.

3) Zoom to the 2nd registration point, choose '2nd reg. point' from the pop-up menu, and repeat the process.

4) Select 'Apply registration to image' from the Register Image pop-up menu to apply the new registration information.
Symbols

Point data, such as depth-to-basement picks, seismic horizon picks, and shot-point or tie-line locations, may be loaded and displayed as symbols over your model. Files may contain Profile (X,Z) or Real-World (X,Y,Z) coordinates; GM-SYS assumes that the coordinate system and projection of the file match that of the model.

A symbol file may contain several different types of information (e.g. depth to basement picks, shot points, etc.). Each line of the symbol file should contain coordinates for the symbol, a symbol flag, and may optionally include dip, and susceptibility fields. The symbol flag should be a positive integer that is the same for all points containing the same type of information. Dips should be in degrees. Susceptibility units may be either cgs or SI; the length of the dip-tails will be scaled logarithmically with values of 10^{-7} scaled to the effective radius of the symbol.

The symbol configuration dialog allows you to associate the symbol flag field in your symbol files with predefined symbols. If any symbols in a file contain only X,Z fields, all symbols in that file will be assigned the flag value #00. Each flag value may be associated with a specific symbol type, size, color, and line weight. Symbol files that include dip and susceptibility information will plot with ‘dip tails’ scaled to the susceptibility.

Enable Symbols

The Enable Symbols selection toggles the display of all loaded symbol files. Regardless of how many symbol files are loaded and toggled on (see below), this option must be toggled on to display any symbols.

Load/Config Symbols

The Load/Config Symbols option brings up the Symbol Manager dialog. Here you may load, delete, or reload one or many ASCII files containing (X,Z) or (X,Y,Z) locations to be displayed as symbols over your model. You may elect to show/hide each loaded symbol file independently and each loaded file may be configured independently.

Well Wells

Well markers show the locations of borings and formation tops in the Cross Section and Plan View panes. Wells are located in model coordinates; i.e. X-Distance along the profile and Z-elevation of the ground surface (Z is positive down). Well horizons are input as depth below ground surface and should always be positive. Units for X, Z, and depth to horizons may be independently selected using the pop-up menus in the Edit Well dialog box.

Enable Wells

This option toggles the display of all Well markers.

Add/Config Wells

You may add, delete, or modify well markers that appear in the Cross Section and Plan View panes. Select one of the existing wells to edit, or click the New button and create a new well.
LAS Wells

LAS well files (v. 1.2 and 2.0) may be loaded and one or two curves displayed in your model. You may configure line color, weight, style, and scale for each selected curve. Well symbols may be selected from a list of pre-defined symbols, or you may add your own well symbols.

Enable LAS Wells

The Enable LAS Wells selection toggles the display of all loaded LAS well files. Regardless of how many files are loaded and toggled on (see below), this option must be toggled on to display any LAS wells.

Load LAS Wells

The Load LAS Wells option activates the LAS Well configuration dialog. Here you may load, reload, and delete LAS well files. You may elect to show/hide each loaded LAS well file independently and each loaded file may be configured independently.

LAS well files may contain one or more log curves. Once you have specified X, Y, and elevation coordinates for a loaded well, you may configure up to two log curves for display, specifying line color, line weight, and scale for each. Scaling of curves fits a specified range of values (e.g. 0 - 3.0 g/cc) into a specified range of distance from the well location (e.g. 2 - 8 km).

Block Fill

GM-SYS allows you to specify a block-fill pattern, a pattern color (the foreground color), and a background color independently for each block. Using this menu, you may elect to display no fill, only the foreground pattern (fill is “transparent”), or both foreground and background colors on a global basis (all blocks). You may elect to scale the block foreground colors by mapping a color table to ranges of block density, susceptibility, or remanent magnetism. Use the Examine Block command tool to control block transparency on an individual basis.

Enable Block Fill

This selection toggles on/off the display of block fill in the Cross Section and Plan View panes. This toggle can also be accessed in the Display menu and the Cross Section pop-up menu. If Enable Block Fill is not selected, the three following items do not appear in the Image menu.

Block Foreground Color

The Block Foreground Color option displays a pop-up menu that allows the user to select one of four choices for selecting the foreground color. The first selection, "Color Blocks as Normal" selects the block-fill color and pattern as set via the Examine Block function or via the Block Parameter spreadsheet. The other three selections utilize the color schemes defined via the Color Tool option described below. Note that the Density, Susceptibility, and Magnetization color schemes only affect the foreground colors. The background colors are set via the Examine Block function or the Block spreadsheet and modified as described below.

Block Background Color

The Block Background Color option displays a pop-up menu that allows the user to modify the way background colors are displayed. “Fill Blocks as Normal” uses the background color and transparency as specified by the user for each block. “Force Blocks Transparent” overrides the user’s transparency settings and makes all blocks transparent. “Force Blocks Solid” fills all blocks with the current foreground color.

Color Tool

The Color Tool selection displays a dialog that allows the user to assign color tables to ranges of block properties (density, susceptibility, magnetization,
and velocity. Each block property may use a different color table. Users can import ASCII color tables in the standard Geosoft RGB or CMYK formats. Exported color tables are Geosoft RGB color tables.

5.1.4 Display Menu

The Display Menu is a selection list that allows you to toggle on/off all of the model elements that appear in the Cross Section, Anomaly, and Plan View panes; with the exception of the model surfaces. The Action Tool Box and Single Block Response curves may be toggled on/off from this menu. Select either cgs, micro-cgs, or SI units for block parameter and anomaly display from this menu.

The Display Menu is organized into sections the Gravity Anomaly, Magnetic Anomaly, and Cross Section panes. GM-SYS displays the same model elements in the Plan View pane as in the Cross Section pane. Options which affect the display of magnetic and gravity curves may be accessed using the Magnetic and Gravity Anomaly pop-up menus as well. All other options may be accessed using the Cross Section pop-up menu.

Display Menu options affect all open models. Display toggles affect all Model Window panes and control the appearance of model elements on plot output.

5.1.5 Profile Menu

Parameters which affect calculation of the gravity and/or magnetic response of the entire model profile may be found under the Profile Menu. GM-SYS requires that the magnetic field parameters, the profile azimuth, and the relative strike angle be set in order to accurately calculate the model's magnetic response. The relative strike angle must be set to properly calculate the gravity response of the model.

Set Mag. Field

Use the Set Mag Field option to input the Earth's magnetic field intensity, inclination, and declination at the location of your survey and model.

If you do not have NGRF, this information may be obtained from a variety of published sources. Maps showing magnetic field data may be found in many geophysical text books (e.g., Merrill and McElhinny, 1983, Fig. 2.2, and Dobrin and Savit, 1988, Fig. 15-7 and 15-8), or from one of the numerous map series available from the USGS (e.g., Fabino, 1983, a,b,c). If you do not have access to these more accurate sources, the field may be approximated by the Earth's dipole field.

For that approximation:

Dipole field intensity:
\[H = 31,200 \times (1 + 3\sin^2 \text{lat})^{\frac{1}{2}} \text{ (gammas)} \]

Dipole field inclination:
\[FI = \tan^{-1} \left(2 \tan \text{lat}\right) \]

Dipole field declination:
\[FD = 0.0 \]

where "lat" is the latitude of the observation point. GM-SYS defaults to values of 56,000 gammas, 60°, and 20° for the magnetic field intensity, field incli-
nation, and field declination, respectively. This option may also be accessed from the Magnetic Anomaly pane pop-up menu.

Set Azi./Strike Angle

Set the Profile Azimuth to correctly orient your model with respect to the geomagnetic field. Both positive and negative entries are acceptable (e.g., a NW profile azimuth may be represented by 315° or -45°).

If your model strike is oblique to the profile azimuth, the Relative Strike Angle must be set. See Section 3.5 on Skewed Models to describe the model strike. The default profile azimuth and relative model strike are 90° (West to East) and 90° (orthogonal), respectively. The Set Azimuth/Strike Angle option is also available in the Plan View pane pop-up menu.

Set Real-World Origin Coord.

GM-SYS uses a profile-based coordinate system, in which the model and gravity/magnetic observation points are located along a straight line. Models created from within Oasis montaj, using XYZGMS, or by import using CVTGMS may have a coordinate transformation associated with the model that allows mapping of the profile coordinates to “Real World Coordinates,” in which the profile origin (X=0, Z=0) is assigned X,Y,Z coordinates. Use this function if you have created a model in another way and wish to associate the profile coordinates to some other coordinate system. See the description of the ECS (External Coordinate System) file for more details.

Set Plan View Depth

The Plan View Depth option allows you to numerically specify the depth of the horizontal slice through the model which is presented in the upper pane as the Plan View. By default, the units used are those of the Z-axis in the cross-section display. You may select different units by clicking the units box and choosing from the pop-up submenu that appears. The Plan View depth may also be changed graphically by using the Move Plan View Depth option in the Cross Section pop-up menu.

Edit Anomaly

Activate the Anomaly spreadsheet editor by selecting the Edit Anomaly option. Within the spreadsheet editor, you may add or delete gravity and/or magnetic stations, change the along-profile position (X) or elevation (Z) of stations, or change the observed values at stations. You may edit, copy, and paste cells and add or delete rows (stations) or import new data using the functions in the Edit Menu, which is visible when the spreadsheet editor is active.

Data to be imported must be in generic, space-delimited ASCII files. Importing any new gravity or gravity gradient data replaces all gravity and gravity gradient data. Importing any magnetic or magnetic gradient data likewise replaces all magnetic and magnetic gradient data.

NOTE: Since GM-SYS requires that gravity or magnetics stations exist at each point where gradients are calculated, adding or deleting gravity or magnetics stations produces a corresponding change in the respective gradient components, and vice versa.

Edit Wells

This option provides an additional interface to the Add/Config Wells option in the Overlay Menu described in Section 5.1.3. It is maintained for compatibility purposes.

Edit Blocks

GM-SYS 4.6 introduces the Block Parameter spreadsheet. To activate the Block Spreadsheet, pull down the Profile menu and choose Edit Blocks. The parameters for each block in the model are displayed as a single row in the spreadsheet. You may edit the parameters and copy and paste one or many parameters from one block to another. This allows you to quickly and easily duplicate block parameters (copy once, paste many) and perform quality-control on your block parameters. The Undo function does not include changes to the Block Spreadsheet. You must
always perform a total recalculation of the model response after making changes in the Block Parameter spreadsheet.

Magnetics Elevation Adjust

Use this option to give all magnetics stations a constant terrain separation. The value entered is an absolute height above topography; GM-SYS does not add this value to the existing station elevations -- it replaces them. To move all stations to the topographic surface, enter "0". This function is useful for modeling a magnetic survey that is draped above the topography. This option is also available in the Magnetic Anomaly pane pop-up menu.

Magnetics DC Shift

This dialog allows the DC Shift to be applied in one of three ways:

1) GM-SYS automatically calculates the DC Shift value to minimize the RMS error ("Auto"),
2) by forcing the calculated curve and the observed curve to match at some user-selected reference station ("Station#"), or
3) by explicitly subtracting a given value from the calculated curve ("Absolute"). GM-SYS defaults to the "Auto" option.

In addition to entering a station number, you may also force the curves to match at a station by placing the cursor on an observed data point in the anomaly pane (a green dot) and clicking the left mouse button. All the calculated values will be shifted by the amount necessary to make the calculated value and the observed value agree at the station under the cursor. This station is indicated on the screen by two vertical arrows above and below the selected point. The point where the two values are the same can be changed at any time by repeating the procedure. The Magnetic DC Shift dialog is also available from the Magnetic Anomaly pane pop-up menu.

Gravity Elevation Adjust & Gravity DC Shift

The Gravity Elevation Adjust and DC Shift options operate identically to the corresponding Magnetics options (see above). They are also available from the Gravity Anomaly pane pop-up menu.

5.1.6 Gradients Menu

The Gradients Menu controls how gradient data in your model are displayed and calculated. The Gradients Menu is always present, even if your version of GM-SYS is not configured to calculate gradient responses.

Enable Grav. Gradients / Magn. Gradient

These options allow you to toggle on and off the display and calculation of all gravity gradients and the magnetic gradient, respectively. If GM-SYS is not registered to include one or both of these options, the unavailable option(s) will be "grayed-out" and inactive. If neither of these menu options is toggled on, the following menu options will not be visible.

Gradient Axis

The Gradient Axis option displays a pop-up menu that allows the user to toggle the alignment of the X-axis for gradient calculations. The X-axis defaults to being coincident with the profile azimuth (PROFILE). The COMPASS option forces the X-direction in the gradient calculations to be due East (90°). The Profile Azimuth (see Section 5.1.5) must be set correctly, relative to True North, for this option to function properly.

Edit Gradients...

The Edit Gradients... option activates the Anomaly spreadsheet editor. If the Enable Grav. Gradients or Enable Magn. Gradients options are toggled on, tabs will appear in the Anomaly spreadsheet editor which
allow you to edit gradient data. Within the spreadsheet editor, you may add or delete stations, change the along-profile position (X) or elevation (Z) of stations, or change the observed values at stations. Standard Cut, Copy, and Paste functions are available from the menu tool bar or the Edit Menu when the spreadsheet editor is active.

NOTE: Since GM-SYS requires that gravity or magnetics stations exist at each point where gradients are calculated, addition or deletion of a station for any gravity gradient component will produce a corresponding change for Gz and all gravity gradient components; and vice versa. Similarly, the addition or deletion of magnetic gradient station(s) will produce a corresponding change in the magnetics stations.

Show Gravity Gradients/Magnetic Gradients

These options activate pop-up menus that allow you to toggle on and off the display of observed data and calculated response curves for individual gradient components. These options are also available in the Gravity Anomaly and Magnetic Anomaly pop-up menus if the Enable Grav. Gradients or Enable Magn. Gradient options, respectively, are toggled on.

5.1.7 Action Menu

Commands available in the Action Menu manipulate the geologic model cross section. All of these commands are also available in the Action Tool Box (shown at right), with the exception of the Undo function (see below). Only one of these commands may be active at a time. The active command is denoted by a check mark in the Action Menu and as a "depressed" button on the Action Tool Box. Pressing the right mouse button prior to completion of an action will abort that action.

Undo

Select the Undo command to reverse the action of any other command in the Action Menu. The Undo command is actually a stack of operations; you may undo several operations in reverse order of their occurrence. Up to 10 operations may be "undone". Undo does not update the calculations. Be sure to click on the calculate button after a sequence of Undo commands.

The Undo button resides on the Menu Tool Bar instead of the Action Tool Box to reduce the chance of undoing operations by accident. Selection of the Undo command does not change the selected action in the Action Menu and Action Tool Box.

Move Point

The Move Point command allows the user to relocate a single point. Select the point by pointing to it with the mouse cursor and clicking the left mouse button. Move the cursor to a new location while holding the mouse button down, then release the button. If auto-calculation is enabled, dynamic recalculation of the magnetic and/or gravity response will occur as the point is being moved. If multiple points lie within the search radius when the button is pressed, GM-SYS will beep and an error message will appear in the status bar. You may need to zoom closer in order to isolate a single point.

In the Plan View pane, you may use the Move Point mode to drag the ends of 2¾-D blocks and change the strike length. When cursor-tracking is enabled, you may use this technique to drag the end of a block in GM-SYS to match a feature in a map displayed in Oasis montaj.
Move Group

The Move Group command allows you to move any number of points the same direction and distance simultaneously. Multiple points may be selected for movement using the Move Group radio toggle box (shown below) which appears when this item is selected. Points may be selected or deselected for moving in any combination of three ways:

- **Mark Point**: toggle selection of individual points;
- **Mark Block**: toggle selection of all points defining a block by clicking within a block; or
- **Mark Box**: toggle all points within a window defined by dragging the mouse.

To move the selected points, choose the Move Marks option, press the left mouse button within the Cross Section pane, drag the mouse in the desired direction, and release the button to complete the move. The Move Group toggle box will disappear when a different action is selected.

Add Point

Place the cursor on a surface where you wish to create a new point and press the left mouse button to create a new point. If a point already exists within the search radius, GM-SYS will beep and display a warning message and no point will be added. If the cursor is moved prior to releasing the mouse button, the new point will follow the cursor. Release the left mouse button. Dynamic recalculation of the magnetic and/or gravity response will occur if autocalculation is enabled.

Delete Point

Place the cursor over the point to be deleted and press the left mouse button. If no point is within the search radius when the button is pressed, if the point is a triple-point, or if two or more points are within the search radius, GM-SYS will beep and display a warning message and no point will be deleted. If two or more points are within the search radius, you must zoom in until a unique point can be selected. The point is deleted when the mouse button is released.

Split Block

When the Split Block option is selected, the initial button press on an existing point will define the start of a new surface dividing a block into two parts. Subsequent button presses and releases will define segments in the surface, until a different, preexisting surface point (bounding the targeted block) is chosen. After each button press, a "rubber band" line will appear from the last vertex to the new cursor position. The cursor position at button press becomes the next vertex. The end of the new surface must be an existing surface point on a surface bounding the targeted block. After the split is completed, a block parameters box will appear to allow modification of parameters for the new block.

Delete Surface

Place the cursor over a point on the surface to be deleted and press the left mouse button. A button release within the display area is required for the deletion to actually occur. Since the targeted surface represents the boundary between two blocks, one of the blocks must be deleted. A pop-up will appear that allows you to choose which block to keep or to cancel the procedure.

Examine

The Examine function is context-sensitive. When the Examine mode is selected from the Action Tool Box or the Action Menu, a left-button press within the Model Window starts the Examine Point or Examine Block modes.

Examine Point

If a single point lies within the search radius when the button is pressed, a dialog box showing the X- and Z-coordinates of the point will appear. This box will allow the location of the point to be redefined.
If two or more points are within the search radius, GM-SYS will beep and display a warning message and no point will be selected. You must zoom in until a unique point can be selected.

If the cursor is over a surface, but no point is within the search radius, the Examine Surface command will be initiated.

Examine Surface

Clicking the left mouse button on a surface between points activates the Surface spreadsheet. From within the spreadsheet, you may edit the coordinates of the points on the surface, add points, delete any or all points except the endpoints, export the surface to an ASCII XZ (profile coordinates) or XYZ (“real world” coordinates) file, or import a new version of the surface from an ASCII file. *Please note that the data will be exported as a space delimited file and no header information will be sent with data.*

Prior to accepting the changes, GM-SYS checks to ensure that the changes will not result in crossed surfaces. If the changes are acceptable, they are incorporated into the model. If not, an error message warns of a problem and indicates the node which caused the first error encountered.

Examine Block

Click the left mouse button when the cursor is within a block in the Cross Section pane to activate the Block Attributes dialog box. Attributes (including fill color and pattern) for the selected block may then be changed. Block attributes are described in detail in the Model Elements section.

Box Zoom

After this mode is enabled, a button press in any of the four display panes starts the Box Zoom function. Hold the mouse button down, drag the mouse to draw a box around the area to be viewed and release the mouse button. The pane will be resized to match the new limits. The horizontal limits of the other panes will be adjusted to match those of the pane in which the box was drawn.

2X Zoom In

After this mode is enabled, a button press in any of the four display panes Zooms In on the pane by about a factor of 2. The horizontal limits of the other panes will be adjusted to match those of the pane in which the box was drawn.

2X Zoom Out

After this mode is enabled, a button press in any of the four display panes will Zoom Out of the selected pane by about a factor of 2. The horizontal limits of the other panes will be adjusted to match those of the pane in which the box was drawn.

Invert

The Inversion Setup dialog, shown at right, is activated by selecting the Invert option from the Action Menu or Action Tool Box. Setting up the inversion entails three steps:

1) selecting the parameters to be freed for the inversion,
2) enabling constraints on the motion of points in the X- and/or Z-Direction, if desired, and
3) setting the weighting ratio for the inversion between gravity and magnetics.

Inversion Setup

Up to 100 parameters may be freed for inversion: parameters include the X-coordinate of a point, the Z-coordinate of a point, the density of a block, the susceptibility of a block, and the DC level. To free the position of a point, click on the of the Invert dialog and select "X", "Z", or "XZ" (2 parameters!) from the pop-up menu. Click the mouse on the model point you wish to free. The point is replaced by a bar or bars oriented in the direction of freedom. In order to free block parameters, choose density or susceptibility from the pop-up menu and click on the block you wish to free. A <d> or <s> symbol will appear near the block label to indicate that the density or susceptibility, respectively, has been freed for that block. Notice that when selected, each item acts to toggle the parameter between free and fixed.

Checking the Auto DC Level box allows the DC level, or DC offset, to vary within the optimization process. Allowing the DC level to be free may allow the optimization to fit the shape of an anomaly without matching the DC level. The "reference station" does not change in the optimization process, so the final "solution" may appear to be shifted from the observed data.

Generally, when modeling a realistic geologic section, the DC level should remain fixed. Make sure the "reference station" is not in the section of the profile which you are trying to optimize. As a general rule, the fixed point should be near one end of the profile, in a section where you are not changing the geologic model.

The Clear All button fixes all model parameters, but does not reset the Gravity:Magnetics weighting (see below).

You may limit the distance that freed points may move during each inversion iteration by checking the Constraints box and entering a maximum distance for dX or dZ in the Constraints dialog box. The checkbox to the left of the constraints button must be checked in order for these constraints to take effect. The units for each direction may be changed independently, but default to the horizontal and vertical units of the Cross Section pane.

The inversion defaults to give equal weight to the gravity and magnetics calculations (gravity:magnetics = 0.5:0.5). A value greater than 0.5 favors the gravity calculations; less than 0.5 favors magnetics. To optimize for only gravity, use 1.0; for only magnetics use 0.0.

Go

Once the desired parameters are freed, selecting the Go button initiates the first iteration of the inversion computations. The revised model and calculated response curves are then displayed and the Iterations dialog box is activated. Fields at the bottom of the Iterations dialog box report the change in the RMS error for the gravity and magnetic response. (Note: the reported errors are calculated only for an "active area" of the profile that may be affected by changes being made to the model.) Other GM-SYS functions are disabled during the inversion/optimization process.

The Next option initiates another inversion iteration. Undo returns the model to its state prior to the last step of the iteration. Choosing the Accept option terminates the inversion/optimization process. GM-SYS then incorporates the changes into the model, completes the inversion process, and closes the Iterations dialog box. Selecting Cancel rejects all changes, returning the model to the state prior to initiation of the inversion process, and closes the Iterations dialog box.
Inversion is a non-linear process with non-unique solutions in most cases. Inverting on the susceptibility or density of a single block should result in convergence after a single iteration. Freeing the positions of multiple points and the properties of several blocks may produce geologically unreasonable solutions, even though the fit of the model response to the data is good. In general, it is better to free only a few parameters at one time. GM-SYS leaves the interpretation of geologic "reasonableness" to you, the interpreter.

Move Label

The Move Label option allows you to relocate block labels and block attributes on the Cross Section model for display or plotting purposes. When you select the Move Label option from the Action Menu or the Action Tool Bar, a radio-toggle box allows you to choose between "Snap mode" and "Drag mode". In "Snap mode", clicking the mouse with the cursor inside a block will move the block label to that location with a zero-length pointer. To use "Drag mode", place the mouse cursor at the lower left-hand corner of the block label (not the block attributes) you wish to move and press the left mouse button. The block associated with the label will be highlighted. While holding the mouse button, drag the label to the desired location. The end of the "pointer" line may be dragged in the same manner.

5.1.8 Compute Menu

The Magn. Auto and Grav. Auto options toggle on/off the autocalculation function of GM-SYS. When Autocalc is on, GM-SYS calculates the changing response of the model in real time as you make changes. This is especially useful when adding and moving a point or moving a group of points. Most of the editing options in the Action Menu and Action Tool Box support autocalculation. The Undo option does not support autocalculation. Selecting Magn. Total Calc. and/or Grav. Total Calc. tells GM-SYS to perform a total recalculation of the model response for the selected parameter the next time the Calculate option is selected. When these options are not checked, the Calculate option (also on the Menu Tool Bar) calculates the effects of changes to the model.

If the Grid Output Option is licensed, the Calc. Geosoft Grids item will appear at the bottom of this menu. Use this option to generate a grid response from your models.

5.1.9 Window Menu

The Window Menu controls the arrangement of open model windows within the Main Window. The Cascade option arranges the open un-iconized model windows so that all header bars are visible. The Tile option arranges and resizes all of the open, un-iconized windows so as to totally fill the model space in the Main Window with equally-sized open windows. The Arrange Icon option moves icons to the lower-left corner of the model space in the Main Window. The selection list allows you to choose which of the open models (iconized or not) that you wish to have in the foreground; i.e. make the active model. The active model is "checked".

5.1.10 Help Menu

Access the Table of Contents for the online Help function for GM-SYS with the Contents option. The online Help may also be searched by keyword.

About... will display version and registration information about your copy of GM-SYS.
5.2 MENU TOOL BAR

The Menu Tool Bar on the Main Window performs some of the basic file handling, editing, and calculation functions. Placing the mouse cursor over a button activates Balloon Help, which identifies the button's function. Four additional buttons follow the usual file-handling functions.

5.2.1 Cursor tracking

When GM-SYS has been started from within OA-SIS montaj, the two cursor-link buttons will be active. Either button may be toggled on, or both may be off. The left-most button causes GM-SYS to send cursor position coordinates to Oasis montaj whenever the cursor is within a GM-SYS pane. The second button causes GM-SYS to send cursor coordinates whenever the mouse is clicked within a pane.

5.2.2 Import/Export Horizon

In GM-SYS, a Surface is a sequence of two or more contiguous nodes, which separates two blocks. A surface begins and ends at a triple-point, where three surfaces intersect. A Horizon consists of one or more contiguous surfaces connected end-to-end (no “branching”).

Import:

Press the ImpSurf button to import or digitize an arbitrary horizon as a “floating” overlay on an existing GM-SYS model. You may add, move, or delete nodes from the floating horizon. You may extend either end of the horizon to the nearest surface (up, down, left, or right) or at “+infinity” or “-infinity” with a mouse-click, without having to zoom out in order to see the target surface.

While editing the floating horizon, the Action Toolbar functions are disabled. You may “Close” the Horizon Import dialog at any time, leaving the floating horizon visible while you edit your model, then return to the dialog by pressing the ImpSurf button again.

When you have adjusted the horizon and the model to your liking, click “Snap” to merge the floating horizon with the existing model surfaces; nodes will automatically be added where the horizon crosses existing surfaces, while dangling ends will be removed. The horizon must intersect model surfaces in at least two places in order to be incorporated into the model. Floating horizons not yet merged with the model will be lost when the model is closed.

The imported file may contain either Profile (X,Z) or Real-World (X,Y,Z) coordinates in space-delimited ASCII format; the import function assumes that the projection is the same as that of the model, as specified in the .ECS file. The floating horizon may not cross itself.

Export:

Press the ExpSurf button to export a horizon. Select a sequence of contiguous surfaces to export and select either Export ProfileX to view and write an ASCII file in profile coordinates, or Export RealWorld XY to view and write the in Real-World (X,Y,Z) coordinate system specified in the .ECS file.

5.3 MODEL WINDOW

A Model Window contains a single model opened for editing. GM-SYS allows multiple models to be open at one time. A Model Window consists of four panes (from bottom to top): Cross Section, Gravity, Magnetics, and Plan View. Sliding sashes between the panes allow them to be resized or closed. The status of each Model Window is completely independent of other Model Windows; each may be independently opened, closed, iconized, or resized. Elements of a Model Window are described in detail in the following sections.

5.3.1 Cross Section Pane

The Cross Section pane contains a view of the structural, geologic model. The horizontal axis is annotated across the top of the pane and the vertical axis is annotated along the left-hand side of the pane. The
two axes may be displayed in different units. Clicking the right mouse button on either axis activates a pop-up menu to allow you to change units (see Section 5.3.8). A scaled bitmap image may be displayed as a background layer. Multiple symbol files may be loaded and displayed as overlays to the Cross Section pane.

5.3.2 Gravity Anomaly Pane

The Gravity Anomaly pane displays the observed and calculated gravity anomalies, in milligals (mGal) or micro-gals (µGal), for the portion of the model displayed in the Cross Section pane. Toggle between mGal and µGal by right-clicking on the Gravity Axis and selecting Change Units.

Observed and calculated gravity gradients are also displayed in this pane, if the Gravity Gradients option is enabled. Gradients are displayed using the same scale, in Eotvos units. The display limits may be changed by using the scroll bar, or by using the Gravity Anomaly Axis pop-up menu and either entering the limits explicitly or using the Autoscale feature.

5.3.3 Magnetic Anomaly Pane

The Magnetic Anomaly pane displays the observed and calculated magnetic anomalies for the portion of the model displayed in the Cross Section pane. The vertical axis units are gammas (cgs) or nanotesla (SI). The observed and calculated magnetic gradient are displayed in this pane if the Magnetic Gradient option is enabled. The magnetic gradient is displayed using the same scale, in either gammas/m or gammas/km (cgs) and nanotesla/m or nanotesla/km (SI). The display limits may be changed by using the scroll bar, or by using the Magnetic Anomaly Axis pop-up menu and either entering the limits explicitly or using the Autoscale feature.

5.3.4 Plan View Pane

The Plan View pane displays a horizontal slice through the model at the specified Plan View depth. Only display items that are turned on in the Cross Section pane will appear in the Plan View pane (e.g. wells, block fill). The Y-axis of the Plan View may be displayed using meters, kilometers, feet, kilofeet, or miles and may use units different than those of the X-axis, selected in the Cross Section pane. Axis units and limits may be changed using the Plan View Axis pop-up menu. Axis limits may also be modified using the scroll bar.

5.3.5 Scroll Bars

Scroll bars are located at the right-hand margin of each pane in the Model Window and at the bottom of the Cross Section pane. The scroll bars allow you to dynamically change the limits and scaling of each pane. A scroll bar is composed of two elements: a narrow black bar which represents the display limits of the current "View" of the model, and an open box. Click the mouse within the open box and drag it along the scroll bar to slide the window along the axis without changing the scale. Click and drag one of the ends of the open box to change the limit of that end of the display window. Changes to the display made using the scroll bars are not automatically saved in the Previous View stack. Use the Mark Current View option from the View Menu to add a view to the stack.

Axis scaling may be controlled explicitly by specifying the range and/or vertical exaggeration in the pane. Right-click on any axis and select the Change Range option to set these parameters.

5.3.6 Resizing Panes: Sashes

The border area between each of the panes in a Model Window are sashes, which may be moved to resize the panes. To move a sash, position the mouse over a sash so that the double-arrow cursor appears, press the left mouse button, and drag the sash to its new position. The total size of the Model Window does not change when sashes are moved.
5.3.7 Balloon Help

Balloon Help is provided for all Menu Tool Bar and Action Tool Box buttons. Simply hold the mouse cursor over a button for a second and a message will appear adjacent to it describing its function.

5.3.8 Pop-up Menus

GM-SYS pop-up menus allow you to quickly and efficiently edit model and display parameters for the active model. Clicking the right mouse button anywhere within a Model Window activates a context-sensitive menu. The pop-up menus encapsulate many of the functions found in the Main Window menu system described above, as well as additional functions described in the following sections. There are nine pop-up menus and several secondary pop-up menus available in an open Model Window.

All secondary pop-up menus are checklists, which allow you to toggle display features on/off, activate dialogs, or select axis units.

Axis pop-ups

Axis pop-up menus allow you to explicitly change the axis scale, range, and or display units, as well as the tick and axis label fonts. Right-click on any axis to view the options available for that axis.

The Change Range option presents a dialog that includes controls for vertical exaggeration and the number of decimal places used to display labels for that axis (This value does not control the labels used in printing. See Section 6.4 for Print settings).

Cross Section Pop-up Menus

There are three primary pop-up menus available in the Cross Section pane: Horizontal- and Vertical-Axis pop-ups and a Cross Section pop-up. The axis pop-ups for this pane are identical. Each allows you to change the units of the axis display and to set an axis range by entering upper and lower limits in a dialog box. If you specify a vertical exaggeration, GM-SYS recalculates the limits for that axis to generate the selected exaggeration. Limits are entered in the units specified for each axis, or they may be changed from within the dialog. Limits may also be changed using the horizontal and vertical scroll bars.

The Cross Section pop-up allows you to change the altitude at which the Plan View "slice" is taken through the model. Items in the Display sub-menu are those found in the Display Menu which pertain to the Cross Section pane. Each may be toggled on/off to customize the display of your models, both for ease of use and for plotting purposes. The Register Backdrop submenu allows you to precisely register a loaded backdrop image (see Section 5.1.3); this submenu is grayed-out if the Seismic Bitmap Option is not licensed. The SBR sub-menu allows you to display the individual contribution to the total model response produced by up to six blocks. In order for the response curves to appear, you must select Show SBRs in the Display Menu.

Gravity Pop-up Menus

The Gravity Axis and Gravity Anomaly pop-ups may be activated from within the Gravity Anomaly pane. The Gravity Axis pop-up allows you to set the range of anomaly values displayed within the pane, either by explicitly entering the limiting values or by selecting "autoscale". The autoscale function adjusts the scale and limits of the pane so that the observed data points and calculated curve fill the anomaly pane.

The Gravity Anomaly pop-up contains options for autoscaling the pane, editing the anomaly data (station locations and observed values), Elevation Adjust, Set DC Shift, and a Display sub-menu that allows you to toggle on/off the observed, calculated, and error curves. If gravity gradients are enabled, an additional Display sub-menu is available. When Single Block Response is toggled on in the Display Menu, an additional sub-menu is available that allows you to toggle on/off the display of each block’s response.

Magnetics Pop-up Menus

The Magnetic Anomaly pop-ups possess identical functionality to the corresponding pop-ups available
in the Gravity Anomaly pane, with the exception that the Magnetic Anomaly pop-up has an additional option to allow you to Set Mag. Field. If the magnetic gradient is enabled, an additional Display sub-menu is available. When Single Block Response is turned on in the Display Menu, an additional sub-menu is available that allows you to toggle on/off the display of each block’s response.

Plan View Pop-up Menus

The pop-up menu for the Plan View pane axis contains options to Change Units in the ±Y direction, scale the pane to a 1:1 View (scale is the same in the X and Y directions), and an option to Change Range in the ±Y directions. The Plan View pane pop-up contains the 1:1 View option, and options to set the Plan View Depth and Set Azi/Strike Angle.

5.4 STATUS BAR

The Status Bar, located at the bottom of the Main Window, provides information about the present status of GM-SYS. The bar is segmented into five fields. The first field from the left and largest field reports the present status of the mouse operation. When selecting commands from the menus, this field displays the command function. When performing one of the editing operations from the Action Menu, this field reports error information if an operation is used improperly or out-of-context.

The second field reports the current mouse operation selected from the Action Menu.

The third and fourth fields report the position of the mouse cursor. The third field displays the name of the pane in which the mouse is moving and the fourth reports the coordinates of the mouse cursor in the units of that pane.

The fifth field reports the vertical exaggeration of the Cross Section pane as presently displayed.
6. PRINTING A GM-SYS MODEL

The GM-SYS Print option, found in the File Menu and the Menu Tool Bar, allows you to print precisely-scaled models to several common vector-graphics formats or to one of the installed printers. GM-SYS internal drivers generate the following graphic formats for printing or importing into external graphics or image-processing applications: Encapsulated Postscript, Binary and Clear Text CGM (Computer Graphics Metafile), Geosoft Plot (.plt), and DXF (R12).

6.1 THE PRINT DIALOG

The Print dialog box displays the current configuration of the model as it will appear on paper. The dialog is partitioned into three sections. The left half of the dialog displays a preview of the model layout, showing the positions and sizes of the model panes, titles, and axis labels on the printed page. The upper-right section of the dialog shows the currently active printer driver and allows you to select a different driver from a pop-up menu. The active driver
may be configured (page size, orientation, and some driver-specific parameters) by clicking on the Setup… button. The lower-right section of the dialog displays the current scale and vertical exaggeration of the plot and contains three buttons that allow you to edit, save, and recall the specifics of the page layout (fonts, scale, units, extents). These options are discussed in detail in Section 6.4.

Global Pattern scaling allows you to increase or decrease the size of all patterns displayed in your model. This may be appropriate when printing to a large-format plotter, when you want pattern elements to be visible from a distance.

6.2 GM-SYS PLOT OUTPUT OPTIONS

GM-SYS provides six internal drivers that produce precisely-scaled, high-quality graphics files from your models, for printing or importing into other graphics and image-processing applications. Windows users may also use all of the installed print drivers on the system.

6.2.1 Postscript

The Postscript driver produces generic encapsulated postscript (EPS) files designed to be compatible with most printers, plotters, and graphic applications, such as Adobe Illustrator and Corel Draw. This driver supports patterns, color fill, symbols, backdrop images, and LAS well files.

6.2.2 Binary CGM

Output from this option will be a "Binary" Computer Graphics Metafile (CGM) that may be sent directly to a CGM print-queue or imported into another document or graphics viewing program. This driver supports patterns, color fill, symbols, backdrop images, and LAS well files.

6.2.3 Clear Text CGM

Output from this option will be a "Clear Text" Computer Graphics Metafile (CGM) which may be sent directly to a CGM print-queue or imported into another document or graphics viewing program. This driver supports patterns, color fill, symbols, backdrop images, and LAS well files.

Table 6.1 Driver Capabilities

<table>
<thead>
<tr>
<th>Driver</th>
<th>Solid Fill</th>
<th>Pattern Fill</th>
<th>Symbols</th>
<th>Backdrop Image</th>
<th>LAS Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postscript (printer)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Binary CGM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Text CGM</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Geosoft PLT</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>DXF</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Raster</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

GM-SYS® v. 4.9
6.2.4 Geosoft Plot (.plt)

The Geosoft .PLT output option will generate a Geosoft PLT file and the associated attribute file. This file may be imported into MAP files in Geosoft's Oasis montaj. Solid color fill is supported in this driver. Patterns are converted to solid colors. Symbols and LAS well files are supported. Backdrop images are not supported.

6.2.5 DXF

Output from this option will be a Release 12-compatible DXF file which may be read into any CAD package that reads DXF files. The DXF output file contains several layers corresponding to the various features of the plot. This allows easy editing of the file once it is imported into the CAD program. Symbols and LAS well files are supported. Raster components such as patterns, color fill, and backdrop images are not supported.

6.2.6 Raster Images

Use the Raster driver to generate high-quality images for inclusion in presentations, email, and web pages. Select the image resolution and the image format. This driver supports patterns, color fill, symbols, backdrop images, and LAS well files.

6.3 PRINTER SETUP…

Choosing Printer Setup… activates the Printer Setup dialog, which allows you to change paper size, orientation, and any printer-specific settings. You may also enter the number of copies you wish to print.

6.4 SETUP PAGE LAYOUT

Selecting Setup Page Layout… activates the Plot Settings dialog, which is comprised of six tabs for configuring various aspects of your plot. The tabs bring each of the settings menus to the foreground in turn,
allowing you to specify how the titles and axes in each model pane will be plotted. Fonts, scale, tick-spacing, and units may be individually set for each pane.

You may click the OK button to keep your changes or Cancel to discard them and return to the Print dialog at any time. Selecting the Apply button incorporates your changes into the model plot preview. Choosing another tab applies your changes and moves to the next Settings menu.

6.4.1 Layout

The Layout settings control the general appearance of the plot, including model titles, margins, fonts and font attributes for titles, time/date and text annotation.

6.4.2 Horizontal

The Horizontal settings determine the appearance of the horizontal (X) axis of the plot. You may change the axis limits and units, set the axis scale or length on the page, the tick and label intervals, as well as the axis title and title font. You may set the number of decimal places to use in plotting your anomaly labels (This is independent of the values used in the model display). Check the include units box to append the axis units to the axis title.

6.4.3 Vertical

The Vertical settings determine the appearance of the vertical (Z) axis of the Cross Section pane on the plot. You may set the axis limits, the axis scale, vertical exaggeration, or height on the paper, the tick and label intervals, as well as the axis title and title font. You may set the number of decimal places to use in plotting your anomaly labels (This is independent of the values used in the model display). Check the include units box to append the axis units to the axis title.

6.4.4 Gravity

The Gravity settings control the appearance of the Gravity pane on the plot. You may set the axis limits, the anomaly axis scale in mGal/paper unit, the tick and label intervals, and the axis title and title font. You may set the number of decimal places to use in plotting your anomaly labels (This is independent of the values used in the model display). Check the include units box to append the anomaly units to the axis title.

6.4.5 Magnetics

The Magnetic settings control the appearance of the Magnetics pane on the plot. You may set the axis limits, the anomaly axis scale in gammas/paper unit, the tick and label intervals, and the axis title and title font. You may set the number of decimal places to use in plotting your anomaly labels (This is independent of the values used in the model display). Check the include units box to append the anomaly units to the axis title.

6.4.6 Plan View

The Plan View settings determine the appearance of the Plan View pane on the plot. You may set the Plan View axis (Y) limits and units, the aspect ratio of the Plan View pane, the tick and label intervals, and the axis title and title font. You may set the number of decimal places to use in plotting your anomaly labels (This is independent of the values used in the model display). Check the include units box to append the axis units to the axis title.

6.5 PLOT PARAMETER FILE (.PPF)

Once you have modified the default settings in the Page Layout dialog, you may save these settings for later use in a Plot Parameter File (PPF) using the Save Config option. By default, this file is called gmwin.ppf. Later, you may choose to reload the PPF file and use the same settings for subsequent plots.

The PPF file is an ASCII file which contains all of the settings specified using the Page Layout dialog. Although the file may be edited by hand, it is best to change the settings from within GM-SYS to avoid errors.
7. GM-SYS Model File Formats

A GM-SYS standard model consists of eight files with the model name as the root and eight different extensions:

- `<modelname>.sur` Surface file
- `<modelname>.blk` Block file
- `<modelname>.grv` Gravity file
- `<modelname>.mag` Magnetics file
- `<modelname>.vew` View file
- `<modelname>.wel` Well file
- `<modelname>.gms` Workspace file
- `<modelname>.ecs` External Coordinate System file

Other files which may be present are:

- `<modelname>.gdo` Gravity gradient file
- `<modelname>.mdo` Magnetic gradient file.

The first six model files are ASCII text files that describe the model. They may be edited or altered if care is taken to preserve the integrity of the model. The .GMS file describes model-specific workspace parameters. The .ECS file contains information for converting "Profile" coordinates (x,z) into "real-world" coordinates (x,y,z).

The gravity gradient option creates one additional ASCII file type, a .GDO file, which is analogous to the .GRV file. The magnetic gradient option also creates an additional ASCII file type, the .MDO file, which is analogous to the .MAG file.

If the .GRV, .MAG, .VEW, .GMS, .GDO, .MDO and/or the .WEL files are not present, GM-SYS will build default versions of those files when the model is loaded. Thus only the two files, .SUR and .BLK, are required when building a model external to GM-SYS.

.ECS files are generated when GM-SYS models are generated by CVTGMS or XYZGMS from external model formats or XYZ data, respectively.

GM-SYS reads all ASCII values in a general format. The number of entries per line must match the examples and each entry should be separated by at least one space. The format of numbers given in the examples need not be strictly followed. The forms 123.4, 1.234E2, and 0.1234000E+003 will all be read equivalently. .GSR, .MSR, .GDR, and .MDR binary files generated by earlier versions of GM-SYS are no longer used and may be discarded.

Note: With the exception of the Origin in the .ECS file, all distances in GM-SYS model files are in kilometers, with the Z-axis positive down (depth).

File Format Changes:

Beginning in GM-SYS version 4.6, extensions have been introduced to the .BLK, .SUR, .ECS, and .GMS file formats to support additional content (e.g. Symbol and LAS well files). By default, GM-SYS uses the newest formats when saving a model.

Earlier versions of GM-SYS will read models created with newer versions, but will lose block color/pattern information and may fail to load large models. Newer features, such as loaded symbol and bitmap files, custom colors, projection and coordinate transform info, and color tables may not appear in older versions of GM-SYS. Modifying these models in older versions of GM-SYS will generally cause this information to be lost.
7.1 SURFACE (.SUR) FILE FORMAT

The surface and block files describe the geologic model. The surface file defines the surfaces in the model.

Line 1: The first line of this file should contain:
1) the azimuth of the profile in degrees,
2) a flag value (128),
3) the model strike angle (degrees from north),
4) GM-SYS model-format version number

Line 2: The second line contains three integer flags that represent the units used for the depth (Z), distance (X), and plan view (Y) axes of the model respectively.
1) depth (Z) unit flag,
2) distance (X) unit flag, and
3) plan view (Y) unit flag.

The flag values for the units are:
1 = Km
2 = meters
3 = feet
4 = Kilofeet
5 = miles

Note: distances are always stored in the file as kilometers. Unit flags control only the display.

Surface groups: Beginning on the third line and continuing to the end of the surface file are the data for the individual surfaces. A single surface is represented by a group of 7 or more lines of data. There can be a maximum of 300 surfaces in the Professional Edition and 750 surfaces with the Extended Model option.

Line 3: The first line of each group consists of a single integer, the surface number (Allowable range: 1-750).
1) surface index number

Line 4: The second line of each group consists of two integers, the index of the left and right blocks sharing this surface, respectively. (Allowable range for block index numbers: 1-300.)
1) index number of left block,
2) index number of right block.

Starting at the first point on the surface and traveling through the succeeding points to the last point, the block on your right is the right block and the block on the left is the left block. Thus, if a vertical surface went from bottom to top, then the left block would be on the left-hand side of the model; whereas if the vertical surface went from top to bottom, then the left block would be on the right-hand side of the model.

Line 5: The third line of the group contains four Boolean flags (0 or 1):
1) gravity model changed flag,
2) magnetic model changed flag,
3) surface deleted flag, and
4) reserved for future use.

The model changed flags indicate that surface has been changed since the last calculation, and its response must be recalculated.

For models constructed external to GM-SYS, these four flags should all be set to 0.

Line 6: This line is not used or updated by GM-SYS versions 4.0, but is maintained for backward compatibility. It contains four real numbers representing X and Z limits of the surface:
1) the minimum value of X,
2) the maximum value of X,
3) the maximum value of Z, and
4) the minimum value of Z.
Note that z is positive downward.

Line 7: A single integer then occurs on the next line of the group which is the number of points in the surface. (Allowable range: >1)
1) number of points in surface

Line 8: The remaining lines of the group contain coordinates for each point in the surface.

1) X coordinate (kilometers),
2) Z coordinate (kilometers, positive down).

Since a surface must have at least two points, this is how the minimum of seven lines per surface is arrived at: two lines will represent the two points. **Beginning with version 4.6, GM-SYS no longer breaks long surfaces into segments of 17 points or fewer.**

Last Line: The end of the surface file is marked by a line containing a single integer equal to -999.

1) -999

7.2 BLOCK (.BLK) FILE FORMAT

The block file consists of four lines of data for each block in the model.

Block groups: There can be up to 300 block groups with four lines for each block.

Line 1, 5, : The first line of a block contains the block index number and a flag which controls display of the block label. The block number must be referenced in at least one surface group in the surface file.

1) block index number, and
2) label display flag.

Line 2, 6, : The second line is the name of the block. This is a character string which may contain spaces. It should not be in quotes.

1) block name.

Line 3, 7, : The third line consists of at least 5 entries; 9 entries are present if the block is 2 ¾-D.

The parameters are:

1) the block density,
2) the inclination of the remanent magnetization,
3) the declination of the remanent magnetization,
4) the susceptibility,
5) the intensity of remanent magnetization,
6) the maximum Y length,
7) the minimum Y length,
8) the density beyond the maximum Y,
9) the density beyond the minimum Y,
10) the susceptibility beyond the maximum Y,
11) the remanent magnetization beyond the maximum Y,
12) the inclination beyond the maximum Y,
13) the declination beyond the maximum Y,
14) the susceptibility beyond the minimum Y,
15) the remanent magnetization beyond the minimum Y,
16) the inclination beyond the minimum Y,
17) the declination beyond the minimum Y.

Line 4: The fourth line of a block consists of four entries defining the X and Z coordinates of the block label and the X and Z coordinates of the label arrow. A fifth entry describes the pattern, foreground/background colors and block transparency. Two additional entries describing these parameters for the +Y and -Y blocks are present if the block is 2 ¾-D.

1) X coordinate of the block label,
2) Z coordinate of the block label,
3) X coordinate of label pointer,
4) Z coordinate of label pointer,
5) hexadecimal block pattern/color fill specifier #PPRRGGBB/#TTRRGGBB,
6) block pattern/color fill specifier for +Y block,
7) block pattern/color fill specifier for -Y block
7) velocity for the block
7) velocity beyond the maximum Y,
7) velocity beyond the minimum Y.

The PP characters specify one of 40 possible patterns; subsequent RRGGBB defines the block foreground color. The TT characters are set to “01” if
the block is transparent, “00” otherwise. The second RRGGBB triplet describes the block background color. Note that a block may have a background color defined, but have transparency enabled.

Last line: As with the surface file, the end of the block file is denoted by the line containing the integer -999.

1) -999

7.3 GRAVITY (.GRV) FILE FORMAT

Line 1: The first line of the gravity file contains four integers that determine the method used to calculate the DC Shift when displaying calculated gravity data.

1) station number for offset calculation; zero if "Station" option is not used;
2) reserved;
3) absolute offset, in mGals; zero if "absolute" method not used or if no offset is used;
4) "Auto" mode; "1" if this method is used, "0" otherwise.

Line 2: The second line also consists of a single integer representing the number of stations in the file. (Allowable range: 1-1000)

1) number of stations in the file.

Following lines: Following these lines is a line for each station.

Line 3: For each gravity station there is a line with fourteen entries (all distances are in kilometers, with z positive down):

1) the X coordinate of the station, in km,
2) the Z coordinate of the station, in km,
3) the observed gravity value at the station, in mGals, and,
4) the calculated gravity response at the station due to the model (which initially should be zero).

Last line: End of File marker.

1) -999

7.4 GRAVITY GRADIENT (.GDO) FILE FORMAT

The gravity gradient file is analogous to the gravity file described above but may contain comment lines that begin with *.

Line 1: The first non-comment line consists of a single integer representing the number of stations in the file. (Allowable range: 1-1000)

1) number of stations in file.

Line 2: The second non-comment line consists of six Boolean flags (0 or 1). These flags should be set to 1 for models constructed external to GM-SYS.

1) Boolean flag.

Line 3: The third non-comment line consists of six additional Boolean flags (0 or 1). These flags should be set to 1 for models constructed external to GM-SYS.

1) Boolean flag.

Following lines: Following these lines is a line for each station.

Line 4: For each gravity station there is a line with fourteen entries (all distances are in kilometers, with z positive down):

1) X-coordinate (in km)
2) Z-coordinate (in km)
3) Gzx observed (in Eotvos units)
4) Gzx calculated (in Eotvos units)
5) Gzy observed (in Eotvos units)
6) Gzy calculated (in Eotvos units)
7) Gzz observed (in Eotvos units)
8) Gzz calculated (in Eotvos units)
9) Gxx observed (in Eotvos units)
GM-SYS Model File Formats

10) Gxx calculated (in Eotvos units)
11) Gyy observed (in Eotvos units)
12) Gyy calculated (in Eotvos units)
13) Gxy observed (in Eotvos units)
14) Gxy calculated (in Eotvos units).

GDO files written by GM-SYS contain additional information at the end of the file, regarding the number of surfaces and the (re)calculation status of each surface. If this information is not present, GM-SYS assumes all surfaces require recalculation.

7.5 MAGNETICS (.MAG) FILE FORMAT

The magnetics file is similar to the gravity file but contains an extra line with the Earth's magnetic field parameters.

Line 1: The first line of the magnetics file contains four integers that determine the method used to calculate the DC Shift when displaying calculated magnetic data.

1) station number for offset calculation; zero if "Station" option is not used;
2) reserved;
3) absolute offset, in gammas; zero if "absolute" method not used or if no offset is used;
4) "Auto" mode; "1" if this method is used, "0" otherwise.

Line 2: The second line also consists of a single integer representing the number of stations in the file. (Allowable range: 1-1000)

Line 3: The third line contains the values for the Earth's magnetic field:

1) inclination,
2) declination and
3) total magnetic field strength (gammas).

Following lines: Following the magnetic field parameters is a line for each station.

Line 4: For each magnetics station, there is a line with four entries (all distances are in kilometers, with Z positive down):

1) the X coordinate of the station,
2) the Z coordinate of the station,
3) the observed magnetic anomaly at the station,
4) the calculated magnetic response at the station due to the model (which initially should be zero.)

7.6 MAGNETIC GRADIENT (.MDO) FILE FORMAT

The magnetic gradient file is analogous to the magnetics file described above, but may contain comment lines which begin with *.

Line 1: The first non-comment line consists of a single integer representing the number of magnetics stations in the file. (Allowable range: 1-1000)

Line 2: The second non-comment line consists of a single Boolean flag (0 or 1). The flag should be set to 1 for models constructed external to GM-SYS.

Line 3: The third non-comment line consists of a single Boolean flag (0 or 1). The flag should be set to 1 for models constructed external to GM-SYS.

Following lines: Following these lines is a line for each station.

Line 4: For each magnetics station, there is a line with four entries (all distances are in kilometers, with Z positive down):

1) X-coordinate (in km),
2) Z-coordinate (in km),
3) Btz observed (in gammas/meter),
4) Btz calculated (in gammas/meter).

7.7 VIEW (.VEW) FILE FORMAT

Views are generally created by the user during interaction with GM-SYS, but each model is initially created with two default views. Each view consists of five lines:

Line 1: View number
Line 2: View Name
Line 3: Model Window Limits:
 1) Minimum X-coordinate of view,
 2) Maximum X-coordinate of view,
 3) Maximum depth of view,
 4) Minimum depth of view.
 5) Plan View depth.

Line 4: Gravity Anomaly Window Limits:
 1) Minimum X-coordinate of view,
 2) Maximum X-coordinate of view,
 3) Minimum anomaly value in view,
 4) Maximum anomaly value in view,
 5) Minimum Y-coordinate in Plan View.

Line 5: Magnetic Anomaly Window Limits:
 1) Minimum X-coordinate of view,
 2) Maximum X-coordinate of view,
 3) Minimum anomaly value in view,
 4) Maximum anomaly value in view,
 5) Maximum Y-coordinate in Plan View.

Last line: end-of-file flag
1) -999

7.8 WELL (.WEL) FILE FORMAT

Wells are used as a type of annotation, but are not used in the computations by GM-SYS. By displaying a well, you may show various horizons, or changes from one type of material to another. This data may come from well logs, core samples, magnetotellurics, resistivity studies, geologic maps, or any other source that you may have. Wells allow you to display on screen all of the geological and geophysical constraints of the model.

The description of each well consists of a well name, location, and the depth (not elevation) and annotation for each horizon (0 to 10). Entries in the first four lines are required; the others may be left blank. GM-SYS allows up to 20 wells per model. The last well entry must be followed by a line containing only an end-of-file flag (-999).

Line 1: 1st Well name
Line 2: X-coordinate (km), well symbol name
Line 3: Z- and Y-coordinates (km),
 (Z positive downward)
Line 4: Number of horizons
Line 5: Depth to 1st horizon (km)
Line 6: Name of 1st horizon (optional, may be left blank)
Line 7: Depth to 2nd horizon (km)
Line 8: Name of 2nd horizon
 .
 .
Line 23: Depth to 10th horizon
Line 24: Name of 10th horizon
Line 25: End of file flag (-999) or 2nd Well name.

7.9 GMS (.GMS) File Format

The GMS file organizes some of the extended features of the GM-SYS model. Model-specific settings, such as custom colors, display units, and the relative sizes of the Cross Section, Anomaly, and Plan View panes are stored in this file. Information about external files used with the model, such as the name, location, and registration of a backdrop image, the names and configuration settings of symbol and LAS well files, loaded color tables, etc., are stored here.

The general format of the .GMS files is similar to that of an INI file. Section headings are denoted by square brackets and are followed by one or more lines of the form:
GM-SYS® v. 4.9

GM-SYS Model File Formats

[HEADING1]
variable_name1=value1
variable_name2=value2

7.10 EXTENDED COORDINATE SYSTEM (.ECS) FILE FORMAT

The ECS file contains information describing the orientation of the model in 3-D space, in the form of a coordinate transformation from 2-D (profile) to 3-D (real world) coordinates. Note: The X, Y, Z values in the Origin are stored in the native (original) units of the data used to create the model. These are the only coordinates in GM-SYS model files that are not stored in kilometers. Models created using XYZGMS 1.04 and later will include this information. Models built from within OASIS montaj also include a section with the Geosoft projection information if the database or grid files from which the model was built contain projection information. Models imported as 3-D DXF files through CVTGMS also contain coordinate transformations.

[XYZ.ECS]
@SECTION=XYZ.ECS
 Origin=X Y Z // Profile 0,0
 CosTheta= // Theta=Azimuth
 SinTheta=
 Scale= // 1/units2km

@SECTION=Geosoft.Projection
 Projection=
 Datum=
 Method=
 Unit=
 Local=

7.11 GENERIC SPACE-DELIMITED ASCII

GM-SYS expects imported files (e.g. anomaly data files, symbol location files) to be space-delimited ASCII, as well, but units are not restricted to kilometers and cgs. Use the pull-down menus in the import dialogs to specify the units used in your files.

7.12 SYMBOL DEFINITION FILE

The symbol definition file, gmwin.sdf, is a library of predefined symbols that may be mapped to flag values in the symbol files. A separate “Wells” group defines well-head symbols for use with well markers or LAS well files. You may add symbols to this file as long as you adhere to the format. Note that subsequent installations of GM-SYS may overwrite this file, so you may wish to maintain a backup copy.

// Symbol Definition File
// Unit = 1/720"
//
// DPI <dpi> ; default DPI
// RefSymSize <refsymsize> ; (Optional) default
// symbsize.

DPI 1200 // dot per inch (default DPI=1.0)
RefSymSize 150 // default symbol size

// index 1 diamond
DefSymbol diamond
 MoveTo 0 85
 LineTo 85 0
 LineTo 0 -85
 LineTo -85 0
 LineTo 0 85
 EndDef

// index 2 +
DefSymbol plus
 MoveTo 0 85
 LineTo 0 -85
 MoveTo -85 0
 LineTo 85 0
 EndDef
7.13 PATTERNS

GM-SYS has the capability to utilize vector patterns for display and plot output. If you have Geosoft’s Oasis montaj installed on your system, GM-SYS will use some of the patterns from “default.pat” file for use as GM-SYS block fill.
8. CVTGMS

CVTGMS is a file conversion utility designed to generate GM-SYS model files from digitized geologic models, DXF, IHF & Card Image 7 export files, and GMA, LCT, & SAKI model files. By default, CVTGMS will read and write GM-SYS model files, allowing you to shift or decimate your models. If the model-conversion option has been licensed, CVTGMS will import and export all supported model files and formats.

CVTGMS is installed automatically with GM-SYS. A CVTGMS icon will be placed in the Utilities submenu of the GM-SYS Program Group in the Start Menu.

The CVTGMS main window consists of a menu bar and two scrollable panes: an upper model pane which graphically displays the input model, and a lower progress pane which provides a log of operations performed on the model.

8.1 GETTING STARTED

Start CVTGMS by double-clicking on the CVTGMS icon in the Start Menu. CVTGMS may also be started from within Oasis montaj, using either the GM-SYS Menu or the GM-SYS toolbar. Use the File Menu to open the file-selection dialog. You may now select the file-type and file you wish to convert. The default file-type is GM-SYS (*.sur); the other file types will be available if CVTGMS is licensed.

Note: You must choose the correct file type for the input file from the pull-down menu. Simply typing the new extension will cause CVTGMS to attempt to read the file with the wrong filter and the operation will abort with an error.

8.1.1 Modifying the model

After reading the input file, CVTGMS displays a plot of the model in the upper pane of the window with a dashed red line showing the model "limits" read or calculated from the file. The model limits are either explicitly supplied, as in a DIG file, generated from the "Full" view, as in a GM-SYS model, or calculated by CVTGMS from the input model extents. One or more green lines within the limits define the surfaces of the model. The lower pane will display a log of operations performed on the model.

If the plot appears "upside down," choose Flip over Z from the Execute menu to change the sense of the Z-axis. At this time, you should also check that the units are appropriate for each axis (Execute Menu | Alter Unit). You may also specify a lateral- (along-profile) or depth-shift and/or reverse the direction of the profile at this time. If the input file is of type DIG or DXF, you may also set the default block parameters at this time. DIG, XYZ, DXF, IHF, & Card Image 7 input files must also be "Snapped" prior to output (see Section 8.3.2 for a description of this function).

CVTGMS will also Decimate files prior to output. This function is particularly useful when the input file is either a seismic model (e.g. GMA) or a digitized model which contains many points along nearly straight surfaces. The Decimate function may dramatically reduce the number of points in the model without sacrificing the quality of the model, which will increase the calculation speed of GM-SYS. Choose a "straightening tolerance" that is appropriate to your model.
8.1.2 Output

When all of the parameters have been set to your satisfaction, choose Save As... from the File menu and select the file-type you wish to create as output. The default file-type is GM-SYS (*.sur). Choose an output file name - make sure the file-extension is included - and click OK. A message in the lower pane will indicate that the file has been saved.

8.2 MENUS

8.2.1 File Menu

Erase Model

This command will remove the currently-loaded file from memory, unconditionally and without saving.

Open...

The Open... command activates the file-selection dialog. Here the user may select the file and file-type to be used as input. Allowable file-types are displayed when the List Files of Type pull-down menu is selected. The default file-type is GM-SYS with the default extension ".sur". Other file types which may be available include:

- AutoCAD DXF (.dxf);
- 2D (X,Z) and 3D (X,Y,Z) ASCII files (.dig, .xyz);
- LCT, Inc.'s 2-MOD (.lct);
- Geophysical Micro Computer Appl., LTD. (.gma);
- GeoSec IHF (.ihf);
- GeoQuest Card Image 7 (.dat);
- Chevron's GAMMA (.gam), and
- US Geological Survey's SAKI (.cmd).

If these other file types do not appear in the “Open File” dialog, the CVTGMS conversions are not licensed.

IMPORTANT: Although each file-type has a default extension (e.g. ".dig"), the user may select a different extension for a given file type (e.g. ".txt"). However, changing the default extension does not alter the expected file format. Therefore, changing the extension to ".dig" when the List Files of Type selector is set to DXF Files (*.dxf) will result in an error because CVTGMS is expecting a file of type "DXF". Because GM-SYS uses specific file extensions for its models, we recommend that the default file type ".sur" always be used when reading or creating GM-SYS models.

Save As...

The Save As... dialog allows the user to save the converted model in any of the available formats. Available formats are displayed when the List Files of Type pull-down is selected. Again, with the exception of GM-SYS model files, a file may be saved with an alternate extension if desired.

Exit

Exit CVTGMS unconditionally, without saving any loaded file.

8.2.2 Execute Menu

Set Block

When creating a GM-SYS model from DIG or DXF formats, the Set Block dialog allows you to set the default block parameters for the "Air" block or other blocks. These parameters include density, magnetic susceptibility and remanent magnetization, and the ±Y-extent of the block(s).

Alter Unit

The Alter Unit dialog allows the user to independently change the X or Z units of the model. Available units include kilometers (km), meters (m), feet (ft), kilo feet (kft), and miles (mi).

Shift XZ...

The Shift XZ... dialog permits the user to shift the model laterally (along the profile) and/or in depth. The amount of shift to be applied must be entered in units of kilometers (km).
Flip over X

This command reverses the model profile direction.

Flip over Z

This command flips the model upside-down.

Decimate dialog

CVTGMS allows the user to decimate superfluous points on surfaces using a "straightening tolerance" entered by the user. Points along a surface which deviate from a straight line by less than the straightening tolerance are deleted, thereby decreasing the number of points in the model. Better results are generally achieved if decimation occurs the Snap... command (see below), when necessary. The straightening tolerance must be entered in kilometers.

Snap... (DIG, XYZ, IHF, & DXF inputs only)

In order to produce a valid GM-SYS model, surfaces must be continuous across the model and nodes should exist where surfaces cross. Digitized horizons and DXF files do not inherently satisfy these conditions. When you ask CVTGMS to Snap... a DIG, XYZ, IHF or DXF file, it will calculate a default "snap distance" based on the minimum point separation of the input file. CVTGMS will "snap" points together (i.e. force the points to be coincident) that miss by the snap distance and create new points where surfaces cross. The snap will force any un-snapped endpoint to snap to the nearest point. Generally the "snap distance" should be kept small. If the input model has no closely spaced points you may want to decrease the default snap distance. You may need to fine tune this parameter to get your desired output model.

The Snap... command also performs several additional "clean-up" functions. Surfaces which extend beyond the "limits" are truncated at that boundary. "Hanging" surfaces which do not connect to another surface or extend to the limit box are extended to the nearest limit (vertically or horizontally). Overlapping surfaces are either separated or combined, according to the "snap distance." Finally, surfaces are extended laterally from the model limits to "infinity" (± 30,000 kilometers). The model surfaces and points will change color as different operations are performed and completed. Each task will be logged in the lower pane, along with any errors in the event that any occur.

Assign Block Names... (DIG, XYZ & IHF inputs only)

The Assign Block Names function utilizes surface_id strings in .DIG and .XYZ files and Horizon names in IHF files to produce block names. It assumes that each horizon defines the top of a body and the name is assigned appropriately. Blocks for which names are not able to be assigned will be named “unlabeled” and a default hatch pattern will be assigned to the block for easier location in GM-SYS. Horizon names that are not used will be written to a log file.

Remove micro-blocks...

“Micro-blocks” describes relatively tiny, usually triangular blocks created when the Snap... command connects surfaces which overshoot by more than the “snap distance”. The Remove micro-blocks... function removes all of the triangular (3-point) blocks which are smaller than a user-defined threshold. Blocks with an area smaller than a specified percentage of the total “Full View” area will be removed from the model.

8.2.3 Views

GM-SYS allows the user to save multiple named "views" -- screen views or windows -- of each model. A view is defined by the current X and Z limits of the model and the current gravity and magnetic limits of the anomaly windows. Views are useful in returning to a specific portion of the model at a later time.

Full View

The default or "Full" view includes the full extent of the profile to be modeled. The Full view is created by CVTGMS from the model limits of the input file.
Infinity

The "Infinity" view includes the entire GM-SYS model, which extends to "infinity" (±30,000 kilometers in either direction) to eliminate edge-effects.

Other - only GM-SYS input

If a GM-SYS model is being used as input, any of the views present in the .vew file may be selected to limit the extents of the output model.

8.2.4 Help

CVTGMS on-line help accesses the WinHelp screen. More recent documentation may be found in the HTML help accessed from within GM-SYS.

About... brings up the registration screen, which contains licensing information, the version of CVTGMS being used, and customer support information. There are no user-changeable options in this window.

8.3 FILE FORMATS

8.3.1 2-D DIG & 3-D XYZ Generic ASCII file

These are space-delimited, free-format ASCII files which contain one or more digitized or exported horizons.

1) 2D (X,Z) coordinates ("DIG" format) and 2) 3D (X,Y,Z) coordinates ("XYZ" format).

These files begin with two "limit" points, which define a bounding square (DIG) or box (XYZ) by specifying two points at opposing corners. Horizons which extend beyond these limits are truncated, then extended to “Infinity” to eliminate edge effects. The initial “Full View” for GM-SYS is also calculated from these limit points.

Each line in the file following the “limit” points defines a node on a horizon and must consist of coordinates and a surface-id string. The surface-id string must be a string of letters and/or numbers (no spaces or commas) which uniquely identifies the surface. CVTGMS interprets each change in the surface-id string as the beginning of a new surface. The Assign Block Names function can utilize the surface-id string to generate names for most blocks. CVTGMS ignores comment lines beginning with "/", "*", or "#".

For output, CVTGMS creates unique surface-id strings from the block numbers on either side of the surface. No additional block information is retained in the output .DIG or XYZ file.

Two-dimensional .DIG file

/Sample DIG input file
/ X Z Surface-ID
123.947 -555.693 limits # X1, Z1, "limit" - Lower left (or upper right) limits of the model
1509.401 -30.572 limits # X2, Y2, "limit" - Upper right (or lower left) limits of the model
442.271 -313.329 1st_surf # X, Z, "surface-id" - X and Z of points on surface
346.609 -329.817 1st_surf
234.453 -349.601 1st_surf
480.206 -179.782 2nd
396.09 -204.513 2nd
305.375 -227.595 2nd
194.869 -245.731 2nd
123.947 -254.821 2nd
734.206 -221 3rd
694.622 -222.649 3rd

Three-dimensional .XYZ file

The format of the .XYZ file is similar to the .DIG file described above, but includes Y-coordinates for each point.

/Sample CVTGMS input .XYZ file
X1 Y1 Z1 Limits
X2 Y2 Z2 Limits
X Y Z Horizon_name1
.
X Y Z Horizon_name1
X Y Z Horizon_name2
.
X Y Z Horizon_name2
For three-dimensional .XYZ input files, CVTGMS transforms the "real world" 3-D input coordinates into 2-D "model-space" coordinates for GM-SYS. CVTGMS uses the X, Y coordinates from the two "Limit" points at the beginning of the file to define a straight line in the Z=0 plane. CVTGMS then projects the X,Y coordinates of each point in the file onto that line to calculate the model-space X-coordinate. The model-space X=0 location corresponds to the "limit" point with the smallest X-coordinate. The model-space Z-coordinate is equal to the real world Z-coordinate. CVTGMS retains the transformation coefficients in a .ECS file which is associated with the model so that model space coordinates can be transformed back to real world coordinates.

Output in the .XYZ format is similar to the .DIG file, with the exception that any transformation information saved in the .ECS file is used to recalculate X,Y coordinates from the model-space X coordinates. CVTGMS assumes that the output profile is a straight line in X,Y-space; i.e. it can not "unproject" the points from the straight line if they were originally non-linear.

8.3.2 DXF - AutoCAD®

AutoCAD DXF files must specify 2D or 3D polylines. The ENTITIES SECTION should contain several POLYLINES which CVTGMS converts to surfaces. Model limits are calculated from the minimum and maximum coordinates of the polylines. "Elevation" and "Extrusion" information contained in the DXF file are saved in a .ecs (External Coordinate System) file. When a GM-SYS model is converted back to DXF format, the .ecs file is used to orient the model in the world coordinate system.

8.3.3 GMA Struct - GeoGraphix™

CVTGMS expects an ASCII version of the .MMD model description file as input, which may be generated using MMD_ASC.EXE. Note that MMD_ASC.EXE expects a STRUCT .MMD file in R2 format. CVTGMS retains block names from the GMA model. The density for each block is calculated by CVTGMS as the simple average of all densities within the GMA model block.

CVTGMS output to GMA format is not implemented at this time.

8.3.4 GM-SYS

When importing a GM-SYS model, CVTGMS expects a surface file (.sur) and a block file (.blk) as the minimum inputs. An external coordinate system (.ecs) file, if present, will be used to orient the model in the world coordinate system for DXF output. If a view file (.vew) exists, CVTGMS will allow you to select the view you wish to export. For instance, you may wish to export only a small portion of the model to another format. Simply choose the view you wish to use from the View menu, manipulate the model with any of the commands available under the Execute menu, then save the model to the selected output format using the Save As... command under the File menu. All portions of the model outside the red dashed line (the view boundary) will be excluded from the output file.

CVTGMS writes at least five files when creating a GM-SYS model: .sur, .blk, .vew, .grv, and .mag. The .sur and .blk files written by CVTGMS define the model in GM-SYS format. A view file is created with two views, a default "full view" designed to include the entire model, and an "infinity" view. The well file contains no wells, only an end-of-file flag. The .grv and .mag files contain only end-of-file flags unless data were contained in the input file (e.g. LCT and GAMMA formats).

If the imported file is of DXF format and contains "Elevation" and "Extrusion" information, CVTGMS saves this information in an additional GM-SYS model file with a .ecs extension.
8.3.5 IHF - GeoSec®

CVTGMS reads GeoSec’s Import Horizon Format (IHF) files, interpreting all Geological Boundary codes except “marker (90)” and “boundary (7)” as surfaces. All horizons not saved in the model are written to an ASCII file (*.sol) suitable for importing and plotting as a symbol file into the resulting model. “Boundary” entries are used to calculate the lateral and depth extents of the model.

The Assign Block Names function will attempt to assign block names based on the horizon names and model geometry. Blocks which remain without a name at the end of this step will be “Unlabeled” and assigned a default pattern to make them more visible in GM-SYS. Horizon names which are not used will be written to a log file. Additional Attributes (density, velocity, etc.) are not currently supported.

8.3.5 Card Image 7 - GeoQuest®

CVTGMS reads horizons and faults in the Card Image 7 format (*.dat). The minimum and maximum X, Y, and Z coordinates are used to define the limits of the model and the initial “Full View” for GM-SYS. CVTGMS exports a model as faults.

8.3.5 2MOD® - Fugro-LCT

CVTGMS reads ASCII model files generated by Fugro-LCT, Inc.'s 2-MOD program. Fugro-LCT models must consist of connected polygons; "floating" polygons are not allowed.

CVTGMS outputs ASCII 2-MOD model files. User may specify output distance units. When converting GM-SYS models with 2-1/2 D blocks, CVTGMS averages the densities of bodies beyond the +y and -y limits of the blocks to generate the single value required by 2-MOD models.

8.3.6 GAMMA - Chevron

CVTGMS reads ASCII model files generated by Chevron's GAMMA program. GAMMA models must consist of connected polygons; "floating" polygons are not allowed at this time. The Snap... function ensures that polygon boundaries match exactly.

When converting GM-SYS models with 2-1/2 D blocks, CVTGMS averages the densities of bodies beyond the +y and -y limits of the blocks to generate the single value required by GAMMA models. CVTGMS outputs ASCII GAMMA model files.

8.3.7 SAKI - US Geological Survey

CVTGMS imports ASCII model files from the US Geological Survey's SAKI modeling program. CVTGMS looks for a .CMD command file, where it expects to find the SAKI parameter (parms) list. Loading will fail if CVTGMS does not find the "mfile" parameter in the command file. CVTGMS loads polygon information from mfile, and gravity and magnetic data from gfile and hfile, respectively, if they exist. The Earth's field is extracted from the efield, einc, and edec parms and the profile azimuth from azimuth. All prisms are assumed to lie perpendicular to the profile azimuth, i.e. relative strike == 90 degrees.

CVTGMS preserves block names, density, susceptibility, and remanent magnetization (magnitude, inclination, declination) and lengths of 2 ½-D blocks. CVTGMS constructs an initial view from the xxx, zzz, ggg, and hhh parms, if available; otherwise the "Full" view is identical to the "Infinity" view.

SAKI models generated by CVTGMS consist of a minimum of two files, .cmd and .bod., containing the parms and polygon information, respectively. If gravity and/or magnetic data are present in the input model format, .ggg and/or .mmm files will also be written.

CVTGMS writes parm records for all of the parameters described in the Input Section, above. The xxx, zzz, ggg, and hhh parms are generated from the selected view (default is "Full" view), if applicable. Note that SAKI does not support skewed models; relative model strike is assumed to be 90 degrees.
9. SUPPORTING UTILITIES

Supporting software NGRF and XYZGMS make working with GM-SYS easier and more efficient.

9.1 NGRF

NGRF provides an easy way to find the Inclination, Declination, and Total Field strength anywhere on earth, at any elevation, at any time between 1900 and the present. Version 1.5 included the new DGRF 1990, the new IGRF 1995, and IGRF’s for 1900 to 1940.

To use NGRF, simply type "NGRF" and change any of the four input parameters displayed on the left side of the screen (Date, Latitude, Longitude, or Elevation). NGRF will recalculate the Magnetic Reference Field Values for those parameters when you type "Enter" or move to another parameter with the arrow keys. The calculation uses the latest theoretical model of the earth's magnetic field published by the International Association of Geomagnetism and Aeronomy, Division V, Working Group 8 (C.E. Barton, Revision of International Geomagnetic Reference Field Released, EOS Transactions 77, #16, April 16, 1996).

NGRF allows the elevation (positive values are above sea level) to be input in meters, kilometers, feet, kilofeet, or miles. From the elevation field, press <enter> or the right-arrow key until the units field is highlighted. Press the space bar to cycle through the unit choices.

Context-sensitive help is available by pressing the 'F1' key. Press <Esc> to exit help.

You can use a mouse to pick the parameters you want to change with the left mouse button. Two clicks with the right mouse button anywhere on the screen will cause the program to end and return you to DOS.

Press <Esc> twice or <Ctrl><Enter> to exit NGRF.

9.2 XYZGMS

XYZGMS is a command-line driven GM-SYS utility program that will read GEOSOFT format 'XYZ' files with several fields of data, and create a GM-SYS model. Input data fields may include topography, additional global horizons, gravity data, magnetic data and station elevations.

XYZGMS incorporates the following features:

- XYZGMS reads free format ASCII files, (i.e. fields of data separated by spaces). Data fields can be in any order you chose. Geosoft line headers need to be present. You select which 'Line' will be used for building the model.
- XYZGMS can window and decimate your data to a subset of your data file.
- XYZGMS allows you to select default values for missing data types (e.g. magnetic station elevations).
- XYZGMS creates all necessary files for a GM-SYS model including conveniently recalled views.
- XYZGMS allows you to specify a starting X-coordinate offset.
- XYZGMS calculates a coordinate transformation that enables location of the model profile in “real-world” coordinates.
Note that XYZGMS converts a multi-segment line into a single-segment profile as shown on the following page. The black line represents the original profile as digitized by the user. The red line is the location of the model profile in real-world X,Y space with values projected perpendicularly onto the model profile. The model-profile azimuth is based on the first and last points in the original profile. The profile location is then shifted to minimize the average mis-fit.

XYZGMS generates a coordinate transformation from the original (X,Y) coordinates & profile azimuth to the profile coordinates (X',Z). The coordinate transformation is stored in the.ECS file.

RUNNING XYZGMS:

XYZGMS is a command line driven program. Typing XYZGMS followed by a number of parameters and options runs it.

Usage:

XYZGMS in out -l= -zg= -zm= -zeg= -zem= -eg= -em= -zt= -t= -u= -d= -x= -y= -s=

where:

in (required) name of the XYZ file (.XYZ assumed)
out (required) root name of the output files (six files)
-l= (required) line type [B, T, or L] and line number
-zg= column for gravity values (a gravity or magnetics column is required)
-zm= column for magnetics values (a gravity or magnetics column is required)
-zeg= column for gravity elevation values (+ is up)
-zem= column for magnetics elevation values (+ is up)
-eg= value for constant gravity elevation (+ is up)
-em= value for constant magnetics elevation (+ is up)
-zt= column for topography values (+ is up)
-t= value for constant topography (+ is up)
-u= unit conversion (default meters). If input is in:
feet -u=3.28
kilofeet -u=0.00328 or -u=3.28E-3
kilometers - u=0.001 or -u=1E-3
miles -u=6.2121E-4
-d= decimation factor. Take only every d th point (Default -d=1)
-x= min,max X limits. The default is to pass entire X range.
-x0= x-coordinate of first point in profile. The default is 0.

-y= min,max Y limits. The default is to pass entire Y range.

-s= min,max Station limits. The default passes all stations.

-h= h1,h2,h3... columns for up to 15 layer horizons. (+ is down)

-q 'quiet mode' (i.e., suppress version message and other non-error messages)

The first point in the model will be placed at X=0 (GM-SYS model coordinates) and GM-SYS model coordinates will be calculated as the distance from that point. The -x0 parameter may be used to shift the starting X-coordinate to any value. Those coordinates may also be shifted using the GM-SYS utility program CVTGMS.

XYZGMS calculates the profile azimuth and assigns relative strike angle=90, magnetic inclination=60, declination=20 and field intensity=56,000 as default values. You may change these for each model in GM-SYS (Profile menu, set field and set azimuth) to the proper values for your profile.

Example: XYZGMS test test -l=L19 -d=5 -t=400 -eg=400 -zg=5

This example will read data from file test.xyz and create a GM-SYS model named test. Only every 5th point will be read, topography elevation is constant at 400 meters, gravity data is in the 5th field of the input data file, and the elevation of the gravity stations is constant at 400 meters.

Two sample files are included with the distribution:

1. gms.xyz is a sample input data file
2. sample.bat is a sample batch file using gms.xyz
10. GM-SYS MODELING AND OASIS MONTAJ

All GM-SYS distributions include a suite of GXs for building, modifying, opening, and plotting GM-SYS models from within Oasis montaj. Load the Oasis menu file `gmsys.omn` to access these functions. If Oasis montaj is detected on the target system during installation of GM-SYS, you will have the option of installing these files.

When models are opened using these GXs, a link is established to communicate cursor position and other information between GM-SYS and Oasis montaj. Two buttons on the GM-SYS toolbar control whether cursor tracking is always active, occurs only on a mouse click, or is disabled.

Notes:
1) Each time a model is opened from within OASIS montaj, a new instance of GM-SYS is started. The New Model and Open Model functions in these instances of GM-SYS are disabled.

2) Cursor tracking and all included GM-SYS GXs are designed to work with the OASIS montaj Free Interface version.
10.1 BUILDING GM-SYS MODELS WITHIN OASIS MONTAJ

Under the New Model submenu of the GM-SYS Menu, there are four methods for building new models from within Oasis montaj; two build models from databases, one method builds models from grids along a digitized profile, and a fourth option copies or “clones” an existing model.

These first three options provide dialogs from which you may elect to include observed data, station elevations, and topography. Additional dialogs allow you to include known horizons, and measured or calculated gradient data in your models. Your new model will inherit the projection information from the database or the first grid sampled, depending upon the method you use.

Note: These techniques generate an intermediate XYZ file (<modelname>_gms.xyz), and a BATCH file (<modelname>_xyzgms_cmd.bat). XYZGMS is then used to generate the new GM-SYS model files (See Section 9).

XYZGMS will convert multi-segment profiles into a single-segment profile as shown on the facing page. The black line represents the original profile as specified by the user. The red line is the location of the model profile in real-world X,Y space with values projected perpendicularly onto the model profile. The model-profile azimuth is based on the first and last points in the original profile. The profile location is then shifted to minimize the average mis-fit.

4) Clone an existing model... copies the model structure of an existing model to a new location, specified by digitizing an origin and a second point to determine azimuth. New gravity and magnetic data may be extracted from specified grids at the new location. This method can not substitute new topography, due to the possible complexity of intersecting surfaces, but you may import and merge a new topographic surface once you’ve opened the model in GM-SYS.

The fifth option, New blank model..., starts GM-SYS with no model loaded. Cursor tracking (see Section 10.3) is not enabled in this case.

1) From current mark... builds a model from the current line in the current database. This option expects some portion of the current line in the database to be “marked” or highlighted. The “mark” designates a range of fiducials or locations which will be used to build the GM-SYS profile and does not determine which channel(s) are used. (Hint: You can select all of the data in a line by double-clicking on any channel header).

2) From map profile... can extract model horizons, data, and topography from specified grids along a digitized profile. Grids may have differing projections and distance units.

3) From selected database lines... builds one or more models from the selected lines in a database. It does not utilize “marked” data.
10.2 WORKING WITH EXISTING MODELS WITHIN OASIS MONTAJ

Use the Existing model submenu to open, modify, copy, or plot the location of an existing model in your workspace. You may open an existing model for editing within GM-SYS by selecting the Open a model... option. Selecting Add data to model... allows you to add or replace observed data in an existing model. Clone an existing model..., described in the previous section, duplicates an existing model and extracts new data. Plot model location... can plot the profile trace, gravity station locations, or magnetic station locations of an existing model on a Geosoft map, based on a selected View within the model. Plot model Plan View... allows you to select any saved View in a model and the plot the Plan View to a Geosoft map.

10.3 CURSOR TRACKING

When a GM-SYS model is created from a database, from grids, or from an XYZ file, a coordinate transformation is written into the .ECS file that translates between GM-SYS “profile” (X,Z) coordinates and “real world” (X,Y,Z) coordinates. A dynamic interface allows GM-SYS to send the (X,Y,Z) coordinates of the cursor to OASIS montaj and have them displayed as a linked cursor within the databases and maps. The cursor will track correctly in 3-D maps when the 3D Viewer is active. If projection information is associated with the X and Y channels in the source database or with the grids from which the model was created, the projection information will be stored in the .ECS file and will be used to correctly project the coordinates reported by GM-SYS to OASIS montaj.

Two buttons in the GM-SYS toolbar control how the cursor position is relayed to OASIS montaj. Pressing the left button (default) allows constant reporting of the cursor position to OASIS montaj. Pressing the right button causes GM-SYS to report the cursor position only on a mouse click. You may elect to deselect both buttons, which prevents GM-SYS from sending cursor coordinates to OASIS montaj.

10.3 LOADING GM-SYS PLOTS INTO GEOSOFT MAPS

To generate a Geosoft-compatible plot from GM-SYS, just select the “Geosoft Driver” as the printer selection in the GM-SYS printer setup. This will generate a Geosoft “.PLT” file that can be loaded into a Geosoft Map. Patterns do not translate but are displayed as the solid foreground color.
11. Tutorial - Create New Model

This tutorial is designed to lead the new user through the features of GM-SYS. In it, we assume that the user has a basic understanding of the features of Windows. Most users will pick up the basics very quickly, allowing them to manipulate models and obtain a reasonable fit of the model response to the data.

The largest section of the tutorial leads the user through the "Create New Model" procedure. Some steps in that procedure may not be intuitively obvious to the first-time user, but after having worked it through once, it is relatively straight forward.

11.1 Overview

Before we begin the step-by-step tutorial, let's stop and take a look at the steps we will use to create a model. We will:

1) create a single block, extending from minus "infinity" (x=-30,000 km) to plus "infinity" (x=+30,000 km), and to a specified depth (default value: z=+50 km);
2) use a sample data file to import topography and observed gravity and magnetic data;
3) insert key geologic horizons extending from mi-

Figure 11.1: Complete model SIMPLE2.
nus infinity to plus infinity; and
4) create a detailed geologic model in the area of
interest that fits the observed data.

Steps 1 and 2 are performed using the New Model
Creation dialog. Steps 3 and 4 are carried out using
the mouse modes available in the Action Tool Box
or Action Menu. We will change views of the model
to work first at the mega-scale, and finally at a de-
tailed scale, looking at smaller portions of the model.

Our exercise will be to input a simple model with a
basement high and overlying sediments, shown in
Figure 11.1.

11.2 CREATE NEW MODEL

The "Create New Model" procedure will create the
single block referred to in Step 1. In this tutorial, we
will also import topography, observed gravity data,
and observed magnetic data and station elevations,
although this is not required.

To begin, start GM-SYS and click "OK" on the reg-
istration screen; an empty Main Window will appear.
Select New Model… from the File Menu (or click
on the New Model icon at the left end of the Menu
Tool Bar) to activate the New Model Creation dia-
log, shown on the following page.

The New Model Creation dialog is partitioned into
four sections. We will work with them in order of
occurrence.

Cross-Section: Set the horizontal and depth extents
for the model. For this exercise, the observed data
extend from 0 to 45 km along the profile and the

![New Model Creation dialog](image-url)

Figure 11.2: New Model Creation dialog.
model will extend from 0 to 50 km in depth. Enter these values in the "Cross-Section" area of the dialog, as shown in Figure 11.2.

Azimuth/Strike Angles: An azimuth of 180° means that the profile goes from north to south, with the plus X direction being due south (180° clockwise from True North). The profile azimuth is not used in the gravity calculations, but must be entered correctly if you intend to do magnetic modeling.

In our example, the profile runs from south to north; i.e. the profile has an azimuth of 0°. Select the "Change" button and enter 0 in the Profile Azimuth field. We will accept the default relative strike of 90°. That means that the strike direction will be 90° from the direction of the profile. In our example, the strike is east-west.

Topography, Gravity Stations, and Magnetics Stations: We will now import topography, gravity stations and magnetic stations from our sample data file. Select the "Import From File" option in the Topography sub-section. The dialog shown in Figure 11.3 will appear:

1) Select the "File…" button to activate a file-selection dialog and choose the file SIMPLE2.ASC included with this tutorial. You will then be given an opportunity to view the contents of the selected file, as shown in Figure 11.4 on the following page.

2) Observe that there are seven lines of header information prior to the beginning of the data in this example, that all distances are supplied in kilometers, and that Z-values are supplied as elevations (positive upward), not as depths (positive downward). Also, the magnitude and direction of the Earth's field at the time and location of the survey is supplied in the header; listed as "Earth's field". You will need to supply this information for your own magnetic modeling. Now click "OK" and return to the Import From File dialog.
3) Now, select "+up" (elevations are positive) and enter "7" in the "Skip Lines" field. We will accept the default units and default fields for X and Z (topo). Click "OK" to return to the New Model Creation dialog. Now go through the same process for the Gravity Stations and Magnetics Stations. Note that the second field (topo) is also the appropriate field for gravity station elevations (Z), but the "Z" field for Magnetics Stations will be "5" and the observed data (Obs) are in column 4.

Earth's Magnetic Field: You may now enter the values for the Earth's field strength and direction supplied in the header (see Figure 11.4) by selecting the "Change" button and filling in the appropriate fields. Click "OK" to return to the New Model Creation dialog. If all of the settings are satisfactory, click "Create".

You should now have a new model on the screen like that shown in Figure 11.5, below.

Click the right mouse button in each of the anomaly panes to activate a pop-up menu and select "Auto Scale". This function automatically adjusts the vertical scale and limits on each pane to include all of the data.

By default, GM-SYS calculates and displays an "error curve" (calculated - observed) for the Gravity and Magnetic panes. To hide these for now, you may select the "Display" option from the same pop-up menus and toggle the display of the Gravity Error and Magnetic Error curves off. They may be toggled on at any time by re-accessing these menus. If grid-lines are present on your initial image, they may be turned off in a similar fashion.

Now is a good time to save your newly-created model.

Figure 11.5: Initial view of newly-created model.
11.3 TYING TO INFINITY

The next step in entering the model from Figure 11.1 is to enter the surfaces that extend from one side of the model to the other. In our example, there are two such surfaces: the top of the "Basement" block, and the horizon between "Upper Sediments" and "Lower Sediments". Both of these horizons should be extended to "Infinity" to remove edge-effects in our calculations.

Select the View Menu and choose Infinity. Now change the upper and lower limits of the cross-section view so that you are only looking at the top 6 km of the model. This may be done in one of two ways:

1) Click the right mouse button in the vertical axis area of the cross-section pane (near the "Depth" label) to activate the pop-up menu and select "Change Range". Enter "-1.5 km" for the minimum depth (Z is positive downward in GM-SYS) and "6.0 km" for the maximum depth, then click "OK".

2) Use the scroll bar on the right side of the cross-section pane to modify the range. Dragging the ends of the white box changes the range within the pane, and dragging the middle of the box shifts the view upward or downward without rescaling.

You should now see a view of the model similar to that shown below:

Now we need to enter the two new surfaces using the Split Block command. Note: When "splitting a block," the intended starting and ending points must be visible on the screen before beginning Split Block. Thus we must first use the Add Point mode to insert the starting and ending points for our new surface. The points we wish to add are circled in the figure above.

Select the Add Point mode by clicking on the "+" icon on the Action ToolBar or by selecting it from the Action Menu. Move the cursor to the surface where you want to add a point (approximately X=-30,000 km, Z=3.5 km) and click the mouse button to insert the point. Insert another point in a similar manner on the other side of the model (X=+30,000 km, Z=6.0 km).
We can now move these new points to the exact coordinates desired by using the Examine function. Select Examine from the menu or the "eye" on the toolbar and click on one of the points that you have just added. Its coordinates will appear in the dialog box. Enter the values shown below:

Point 1: X=-30000 Z=3.5
Point 2: X= 30000 Z=3.5

You are now ready to start the Split Block operation.

HELPFUL HINT: Following the instructions above, you started on the right side of the model and ended with a point on the left. The highlighted block was above (to the right of) the new surface as you drew it. While using Split Block, the new block is always created on the right-hand side of the new surface, when traveling along the new surface in the direction in which it was created. If you had started on the left side of the model and ended on the right, the new block would have been below the new surface, instead of above. This should not be a problem, but you may need to Examine the blocks and enter the proper information in the dialog box.

Now, in a similar fashion, insert a new surface for the horizon between the upper and lower sediments. The two ends of that surface should be:

Point 3: X=-30000 km; Z= 2.0 km
Point 4: X= 30000 km; Z= 1.5 km

In the dialog box, change the block name to "Lower Sediments" and the density to 2.35 g/cm3. Click "OK".

Figure 11.7: Examine Block dialog, allowing the user to set the parameters for the newly-created block.
In the dialog box, change the block name from "Copy of Lower Sediments" to "Upper Sediments" and the density to 2.50 g/cm³.

Now we have the gross features of our model built. The surfaces that need to be tied to infinity are taken care of and we can return to the geologic model of interest. We will do this through the View Menu.

This is a good time to save your model.

In the View Menu, select Startup. Again set the upper and lower limits of the model window to -1.5 and 6.0 respectively. Your model should look like the figure on the following page.

Now save this view so you can easily return to it. Select the View Menu and select Edit Views to activate the View List dialog. Select the Startup view, click "Repl. w/CView" (replace with current view), then click "OK" to close the dialog.

11.4 SKETCHING YOUR MODEL

Looking back at Figure 11.1, we see that we still need to build the basement high and truncate the "Lower Sediments" on either side of that high.

First, use the Add Point command to place anchor points on both surfaces near the edge of the area of interest (see Figure 11.9). Placing anchor points prevents changes on-screen from propagating into areas off the screen. Notice that as long as you hold the mouse button down, the newly added point will move with the cursor.

Secondly, add and move points upward on the intra-sediment horizon (between upper and lower sediments) to make room for the basement high. In the same fashion, add and move points on the basement surface until it is where you want it. Your model should be similar to the one shown in Figure 11.9, below.

Now, create two new surfaces to truncate the "Lower Sediments" against the "Basement", as shown in Figure 11.10 on the following page. This will leave a remnant block with lower sediments above the basement high.

Figure 11.8: Working view of the new model.
Delete the remnant block of lower sediments. Select Delete Surface from the Action Menu or Action ToolBar. Move the cursor to the surface you want to delete and click on a point on that surface. The figure below shows one of the two points that would work in this example.

A new block has now been formed joining the two blocks on either side of the deleted surface. The blocks on either side were the "Upper Sediments" and "Copy of Lower Sediments" (they may have slightly different names depending upon which direction you drew the surface using the Split Block function). You must select the block you wish to keep from a pop-up menu, thereby extending the properties of that block into the area where the other block existed. Indicate that you wish to keep the "Upper Sediments" block.

Figure 11.9: "Anchor points" may be used to limit the area affected by changes to a surface.

Figure 11.10: Truncating the lower sediments against the basement high, leaving a remnant block to be removed.
You should now use the Examine function to make sure the densities, susceptibilities, and names of all the blocks have been set to the desired values, shown in the table below. For instance, change the name of the lowermost block from "Crustal rock" to "Basement" by selecting Examine from the Action Menu (or the "eye" in the Action Toolbar) and clicking the mouse within the polygon to bring up the Examine Block dialog. While the dialog is open, you may also change the block parameters to those shown in the table. Click "OK" when you are finished with each block and then select another block. Note that it is possible to have more than one block with the same name.

You should now have a completed model which approximates the one shown in Figure 11.12.

You are now ready to calculate the gravity and magnetic response to your geologic model and to start refining the model.

11.4.1 Applying a DC Shift

Select the Calculate function from the Menu ToolBar (calculator icon) or select Calculate from the Compute Menu.

When you first perform the Calculate function, the calculated gravity and magnetic response may be off

Table 11.1 Tutorial Table

<table>
<thead>
<tr>
<th>Block</th>
<th>Density</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Sediments</td>
<td>2.50 g/cm³</td>
<td>0</td>
</tr>
<tr>
<td>Lower Sediments</td>
<td>2.35 g/cm³</td>
<td>0</td>
</tr>
<tr>
<td>Lower Sediments</td>
<td>2.35 g/cm³</td>
<td>0</td>
</tr>
<tr>
<td>Basement</td>
<td>2.70 g/cm³</td>
<td>0.005 cgs units</td>
</tr>
</tbody>
</table>
the screen, as the calculated absolute gravity values are of the magnitude of 5,000 mGal. A "DC shift" must be applied to the data in order to match the calculated curve with field data.

By default, GM-SYS calculates an RMS difference between the observed data and calculated response and applies that difference to the calculated response (Auto mode). To enter your own DC shift value, select Gravity DC Shift or Magnetic DC Shift from the Profile Menu, or click the right mouse button in the appropriate anomaly pane and select DC Shift from the pop-up menu. You then have the option of selecting Auto, entering an Absolute shift, or choosing a Station on the profile to serve as an "anchor point", at which point GM-SYS will always force the curves to match. If you choose the Station option, that point is highlighted in the anomaly pane by a double arrow, as indicated in the display shown below.

If you use the Station option for applying a DC Shift, you should pick a station outside the area of interest, probably at one end of the profile. If you make a change in the model which affects the gravity at this point, it will alter the entire curve in order to maintain the "fit" at this station. It is often advantageous to select a point which is normally off the screen and

![Figure 11.12: Completed "roughed-out" model. Display of block labels and block parameters are turned off.](image)

![Figure 11.13: Arrows indicate the location of the Station used to calculate the DC Shift using the Station option.](image)
beyond any portion of the model which is likely to be altered. When modeling regional features extending across the entire model, the effects of this "anchor point", and its location, should be kept in mind. For this example, select the Auto option. After applying a DC Shift, you will want to apply Auto Scale to each of the anomaly panes to be sure that all of the observed and calculated curves are visible. In the above display, the limits have been changed to -120 and 120 gammas.

You may now save the anomaly pane limits by selecting Edit Views from the View Menu and replacing the Startup with the current view.

This is a good time to save your model.

11.4.2 Label Placement

Labels are turned "on" by default, but they may initially appear outside of the working view. Using the Move Label option, the labels for each block be placed in their desired locations. Select the Move Label option from the Action Menu or Action ToolBar, and click the "Snap Mode" radio button. Click the mouse in the desired block and its label will automatically be moved to that location. If you wish to change the block name, use the Examine function.

If there is not enough room within the block to display the label, the label may be moved outside of the block and a pointer extended to the block. Select the "Drag Mode" radio button and place the mouse cursor at the lower left-hand corner of the block name (above the block parameters, if they are displayed). Depress the mouse button and drag the label to its new location; the pointer will extend from the old location to the new one. You may also drag the other end of the pointer by selecting and dragging it. When you are happy with the placement of the labels, save your model.

Figure 11.14: Finished model, with labels positioned on-screen.
If you don't want the air block label to appear on the screen, you may zoom out and "Snap" it to a location well beyond the area of interest before zooming in.

Your finished model should appear something like that shown in Figure 11.14.

Don't forget to save your model.

This concludes the Create New Model Tutorial. We have worked through the procedure for generating a starting model and importing data, and have developed a simple model. A more complex model can be developed using the same simple steps introduced here.

You may continue to explore features of GM-SYS by manipulating the model using the Add Point, Delete Point, Move Point, Move Group, Split Block, Delete Surface, and Examine functions.
12. REFERENCES

Index

2x Zoom In 49
2x Zoom Out 49
Add Point 48
Box Zoom 49
Delete Point 48
Delete Surface 48
Examine 48
Invert 49
Move Group 48
Move Label 51
Move Point 47
Split Block 48
Undo Button 47

.A 27
A/m 27
Abort. See Undo
Absolute Gravity 21
Action Menu 47
Add Current View 40
Add Point 48
Anomaly
 Bouguer 17, 24
 Free-Air 17, 24
 Residual 17, 24
Applying a DC Shift 85
ASCII 17
Aspect Ratio 55
Asymmetric blocks 22
Auto DC Level 46, 50
Autocalc 19, 48
Autoscale
 Gravity Anomaly Pane 53
Axes 53, 60
Azimuth
 16, 17, 22, 29, 44, 62
 Default Profile 45

.B 24
Backdrop Display. See Bitmap Images: Seismic Bitmap Option
Backdrop Images. See Bitmap Images

.BBK 62
.VEW 66
.WEL 66
17 Point Surface 63
2 ½-D Modeling. See 2 ¾-D Modeling
2 ¾-D Modeling 22
2-D Modeling 21
2X Zoom In 49
2X Zoom Out 49
4π 27

A

Abort. See Undo
• Absolute Gravity 21
Action Menu 47
Add Current View 40
Add Point 48

A/m 27

B

Backdrop Display. See Bitmap Images: Seismic Bitmap Option
Backdrop Images. See Bitmap Images

Barton, C. E. 89
Best Fit. See Inversion
Bevis, M. 90
Binary CGM 58
Bitmap Display 30
Bitmap Images 34
 Registering 41
 Seismic Bitmap Option 34
Blakely, R. J. 89
Block 33
 Asymmetric 22
 Block Data 34
 Block Labels 34
 Edit Blocks 45
 Foreground Color 43
 Split Block 48
 Spreadsheet 45
Block (.BLK) File Format 63
Bouguer Values 17, 24
Box Zoom 49
Bt 28
Btz 29

C

Campbell, D. L. 89
Carmichael, R. S. 89
CGS 24
Clark, S. P. 89
Clear Text CGM 58
Close 38
Computational Basis for GM-SYS 23
Compute Menu 51
Connard, G.G. 89
Copy protection 15
Create New Model
 Tutorial 78
Cross Section 39
 Pop-up Menus 54
Cross Section Pane 52
Cursor Tracking 75
DC Shift 21
Delete Point 48
Delete Surface 48
Display Menu 44
Dobrin, M. B. 89
Dongle 15
DXF 59

E-mail address 14
Earth
 Magnetic Field 18
Edit Anomaly 45
Edit Blocks 45
Edit Gradients 46
Edit Views 40
Edit Wells 45
Enable
 Gradients 46
Engineering Edition 13
Examine 48
Examine Block 49
Examine Point 48
Examine Surface 49
Exit 39
Export
 Horizon 52
 Surface 49
Extended Coordinate System (.ECS) File Format 67

Fabiano 89
File Menu 38
 Close 38
 Exit 39
 New Model 38
 Open Model 38
 Preferences 38
 Previously Opened Model List 39
 Print 39

Save as 38
Save Model 38
Formats
 Bitmap Display 30
Forward Modeling 23
Free-Air 17, 24

Gaussian 24, 27
Geologic Reasonableness 21
Geosoft Grid (.grd) 29
Geosoft Plot (.plt) 59
GM-SYS
 Components 33
 Engineering Edition 13
 LAB Edition 13
 Professional Edition 13
GM-SYS Options 13, 75
GM-SYS Plot Output Options 58
GMS (.GMS) File Format 66
Go 50
Gradient Axis 29, 46
Gradients 27
Gradients Menu 46
Grant, F. S. 89
Grauch, V. J. S. 89
Gravity
 Gradients 27
 Print Settings 60
Gravity Anomaly 17, 24
Gravity Anomaly Pane 53
Gravity DC Shift 46
Gravity Elevation Adjust 46
Gravity Gradient (.GDO) File Format 64
Gravity Gradients Display 29
Gravity Pop-up Menus 54
Gravity Stations 35
Gravity Units 27
Gravity/Magnetic Gradient Option 27
Grid Output
 Introduction 29
Gz 28, 29

H
H 24
Heirtzler, J. R. 90
Help Menu 51
Horizon 33
 Import/Export 52
Horizontal
 X axis of the plot 60
Hubbert, M. K. 89

Images
 Bitmap Display 30
 Loading Bitmap 34
 Raster Output 59
 Registering 41
Import
 Horizon 52
 symbols 30
 gravity and/or magnetic data 17
 topography 17
Infinity
 Tying To Infinity 81
Installation
 general 15
 Red Disk 15
Inverse Modeling 23
Inversion 23
 Parameters 23
 Uniqueness 23
Inversion Setup 50
Inversion/Optimization
 GM-SYS Option 23
Invert 49

J
J 24
Joint Inversion/Optimization 23

K
Koenigsberger ratio 26
Print dialog 57
Printer Setup... 59
Printing
 Raster Images 59
Professional Edition 13
Profile Menu 44

Q
Q 26. See also Koenigsberger ratio

R
Rasmussen, R. 89
Raster Images
 Output 59
Real-World Coordinates
 Set Origin 45
Reference Station 50
Registering Bitmap Images 41
Relative Strike 22, 44
Remanence Parameters 34
Remanent Component 26
Remanent Inclination 26
Remanent Magnetization 26, 33
Residual Values 17, 24
Resizing Panes: Sashes 53
RMS error 46, 50
Rotated-to-Pole Magnetic Data 24

S
SAKI 14
Sashes 53
Save as 38
Save Model 38
Savit, C. H. 89
Scroll Bars 53
Seismic Bitmap Option
 Block Foreground Color 43
 Enable Block Fill 43
 Load Backdrop... 41
Set Azimuth 45
Set Magnetic Field 44
Set Origin
 Real-World Coordinates 45
Set Plan View Depth 45
Setup Page Layout
 Printing 59
Shive, P. N. 89
Show
 Gradients 47
Single Block Response 24
Sketching Your Model
 Tutorial 83
Skewed Models 22
Space-delimited ASCII files 67
Split Block 48
Spreadsheet
 Block Parameter 45
 Surface 49
Standard Model
 Eight File Types 61
Stations
 Gravity 17
 Magnetic 17
 Topography 17
Status Bar 55
Strike Angle
 Profile Azimuth 17
Strike Angle
 Relative 17
Supported platforms 14
Surface 33
 17 Points 63
 Examine Surface 49
 Export 49
 Number Of Points 63
 Spreadsheet 49
Surface (.SUR) File Format 62
Surfaces
 Maximum # 62
Susceptibility 23
 Block Parameters 33
 Factor of Difference 27
 Inversion Setup 50
Magnetic 26
Symbol Definition File 67
Symbol Display 30
Symbols 35
 Defined 67

T
Tables
 Driver Capabilities 58
 Example Susceptibilities 26
 GM-SYS Units 25
 Gravity Conversion Factors 27
 Magnetic Conversion Factors 25
 Rock Densities 28
 Tutorial Table 85
Talwani, M. 90
Technical Support 14
Terrain Effects 17, 24
Topography
 Gravity Stations 17, 35
 Magnetic Stations 17
 New Model 16
 Surface 33
Tutorial
 Applying a DC Shift 85
 Create New Model 78
 Label Placement 87
 Overview 77
 Sketching Your Model 83
 Tying To Infinity 81
Tying To Infinity
 Tutorial 81

U
Undo 47
Uniqueness 21

V
Vertical
 Z axis of the plot 60
 vertical exaggeration
 axis labels 54
Index

View (.VEW) File Format 66
View List 40
View Menu 39

W

Webring, M. 90
Well (.WEL) File Format 66
Well Display 30
Wells 35
West, G. F. 89
What is GM-SYS? 13
Window Menu 51
Windows
 versions supported 14
Won, I. J. 90
Worzel, J. L. 90

X

X axis
 Print Setting 60
xx 29
xy 29
XYZGMS 69

Y

Y axis 21, 22
yy 29

Z

Z axis
 Print Setting 60
Zoom
 2X Zoom In 49
 2X Zoom Out 49
 Box Zoom 49
zx 29
zy 29
zz 29