Interpretation

Using all available data (wells, seismic, outcrop, regional studies, gravity, magnetics, etc.) build a framework of present-day structure and stratigraphy

- Structural Interpretation
 - Faults & Folds
 - Subsidence & Uplift
 - Structural Trends
 - Structural Features

- Stratigraphic Interpretation
 - Unconformities
 - Stratal Packages
 - Environments / Facies / Lithologies
 - Ages

Seismic Interpretation

Determine the local geology from the subsurface images

- Map faults and other structural features
- Map unconformities and other major stratal surfaces
- Interpret depositional environments
- Infer lithofacies from reflection patterns & velocities
- Predict ages of stratal units
- Examine elements of the HC systems

Reflector Character and Geometry

Continuous reflector truncating short ones

Faults are discontinuities of the reflectors
Isochron map of reflector-1: Isochron = two way time

Average velocity map of reflector-1

Depth map of reflector-1

Synthetic
The Perils of a Seismic Section in Time

Would you drill this anticline? Bond et al. 2007
The Perils of a Seismic Section in Time

The same section in depth

The anticline does not exist in the depth section. It is a "velocity pull-up" created by fast rocks above it.

3D Seismic Block

3D Interpretation

Seismic Image of Ancient Reef in Alberta [400 million years old]

Relate features seen in seismic to stratigraphic or structural processes

3D Interpretation

Fancier stuff: Ant tracking of salt domes for fracture detection

Uses computer technology to visualize seismic data
Variance Attribute: Trace to trace variability in 3D seismic block

Patchesawra Surface flattened at 1.752 sec

Take Home Ideas

- Seismic Reflectors
 - Resolution Limited to 10’s of meters
 - Areal Coverage
- Time domain versus Depth domain
 - Well to Seismic Ties
 - Velocity Model
 - Convert TWT to Depth
 - Avoid Velocity effects
- Seismic Interpretation Provides Earth Image
 - Structure and Stratigraphy